Что такое молочная кислота? Образуется молочная кислота


Молочная кислота, лактат и гликолиз. Просто о сложном

При рассмотрении подобных тем, требующих глубокого знания химии, биологии и физиологии, постоянно путают причинно-следственные связи. Но так же надо признать, что на сегодняшний день наши многие представления о работе организма — это, в основном, догадки, основанные на полученных данных, которые иногда могут кардинально меняться с течением времени.

Аэробный режим

Наш организм является аэробным. То есть, он не может существовать без воздуха. Для химико-биологических реакций, происходящих на молекулярном уровне, нужен кислород. Поэтому, если можно так выразиться, мы постоянно существуем в аэробном режиме, или, иными словами, в полной зависимости от кислорода.

Анаэробный режим

Но в последствии биохимики выяснили, что клетки могут продолжать работать и без достаточного количества кислорода (а то и вовсе без него) и по-прежнему расщеплять глюкозу (наш основной универсальный источник топлива). То есть, делать все то же самое, но уже в анаэробном режиме.

АТФ

И в том, и в другом случае, наши клетки производят из глюкозы молекулы АТФ (аденозинтрифосфат), которые и обеспечивают энергией все химические процессы.

Гликолиз

Процесс усвоения глюкозы называется гликолиз. Другие химические соединения, образующиеся в результате гликолиза — это пируват (пировиноградная кислота) и молочная кислота.

Считается, что пируват — это результат аэробной деятельности, а молочная кислота — анаэробной. Это не совсем так, но сути это не меняет.

Пируват

Это важнейший промежуточный продукт энергетического обмена. Одна из основных ролей пирувата в организме – участие в цикле Кребса (цикл взаимодействий химических элементов и ферментов, в результате которых образуются топливные элементы АТФ или ее непосредственные предшественники).

Молочная кислота

В популярных фитнес-журналах принято считать, что в тренировке существует переломный момент, когда из-за нехватки кислорода при превышении нагрузки в мышцах образуется молочная кислота, что является причиной всех проблем, от быстрого утомления до боли, и которая «вымывается» из организма через пару дней. Такое описание процессов крайне некорректно и вводит в заблуждение.

Лактат

Дело в том, что молочная кислота вырабатывается всегда (и не только молочная). И в состоянии покоя тоже. Но сама по себе она ни на что не влияет, поскольку моментально распадается на составляющие. Можно даже сказать, что она уже предстает перед нами в виде исходных элементов, покидая клетку.

Одной из составляющих этого распада (диссоциации) является лактат — соль молочной кислоты. Поэтому более уместно говорить об уровне лактата, а не молочной кислоты. Соответственно, вопрос «как вывести молочную кислоту из мышц» абсурден, поскольку ее там просто нет.

Еще более неправильно ставить знак равенства между молочной кислотой и лактатом, подразумевая, что это одно и то же. Действительно, иногда в биохимии эти два понятия приравнивают, но в совершенно других обстоятельствах, например, когда можно не учитывать общую кислотность. В нашем же случае подобное сравнение привело к многолетнему искажению данных при изучении химических процессов.

Лактат, тем временем, тоже никакого зловредного воздействия на мышцы не оказывает, боль не вызывает и к утомлению не причастен. Более того, он сам по себе является не побочным продуктом, а экстремально быстрым топливом при пиковой нагрузке и абсолютное его большинство ликвидируется печенью (и напрямую клетками) именно этим образом. Причем к нормальному уровню (в состояния покоя) он возвращается в течении часа.

Следует отметить, что многие химико-энергетические процессы в организме являются обратимыми. Это относится и к лактату, который запросто синтезируется из пирувата (и еще одного фермента NADN). Подобные превращения элементов позволяют оптимизировать циркуляцию и хранение веществ по организму и срочно транспортировать их в недоступные места в случае необходимости. Например, сквозь клеточные мембраны.

Кислотность внутриклеточной среды

Как мы выяснили ранее, про молочную кислоту, как таковую, можно забыть (но не про лактат). Однако не получится забыть про второй компонент, образовавшийся при ее распаде —  свободные протоны или, если быть точным, катионы водорода H+, способные менять рН (кислотность) внутриклеточной среды (сильно ее повысить с ростом концентрации, вплоть до кислоты).

Образование катионов водорода — это неизбежное условие усвоения глюкозы. Особенно, в анаэробном режиме. Есть веский повод обвинить лактат в росте кислотности. Однако при детальном рассмотрении оказывается, что некоторые реакции, из которых состоит гликолиз, ведут не к росту, а к снижению кислотности среды. Например, при синтезе лактата из пирувата, при котором забирается протон. Лактат выводится из клетки белком, который так же использует для этого еще один протон.

Сейчас известно, что основной источник протонов в активно работающей мышечной клетке — это распад АТФ. Поэтому метаболический ацидоз – закисление среды мышечных клеток во время интенсивной нагрузки – связан именно с использованием энергии АТФ, а не с синтезом и накоплением лактата, что идет вразрез с устоявшимися неверными представлениями.

«Это производство (а также выброс лактата в кровь) требует потребления протонов, снижая их концентрацию в клетке. Поэтому образование и накопление лактата может служить хорошим индикатором закисления клеточной среды, но они не связаны как причина и следствие.» — журнал Physiology.

Уровень лактата

Рост уровня лактата не имеет прямой зависимости от дефицита кислорода, как считалось ранее, но может косвенно о нем свидетельствовать. Накопление его происходит из-за малой скорости переработки веществ и трансформации их в энергию в анаэробном режиме, которая, однако, подлежит тренировке.

runiron.com

молочная кислота в мышцах - как вывести её и что это такое

Организм человека Автор статьи: организм тренировки усталость

Многие начинающие (и не только) атлеты понятия не имеют, какие же процессы протекают в их организме, когда они делают упражнения с отягощениями. Взять к примеру, понятие молочной кислоты. Большинство атлетов воспринимают ее как самую большую «головную боль» для тех, кто стремится к мышечному росту. Как протекают все эти процессы, почему бодибилдеры так негативно относятся к молочной кислоте и правильно ли такое отношение, разберемся дальше.

Начинаем с теории: молочная кислота

Вам, наверное, тоже известно то чувство, когда на следующий день после интенсивной тренировки (или нагрузки после длительного перерыва) ни то, что заниматься сложно, ни руками, ни ногами шевелить не хочется, да и не получается. Всю вину за такое «безобразие» перекладывают на молочную кислоту. Но так ли это на самом деле, давайте разберемся.

Итак, молочная кислота представляет собой прозрачную жидкость, которая является побочным продуктом деятельности организма. Возникает она во всех тренируемых мышцах после интенсивных нагрузок. Количество накапливаемой молочной кислоты в мышцах прямо пропорционально количеству подходов и интенсивности нагрузок.

Для того, чтобы у организма было достаточно энергии, необходима глюкоза, которая расщепляется (высвобождает энергию), а побочным продуктом этого процесса является лактат. При интенсивных нагрузках весь лактат из мышц выводиться просто не успевает, поэтому к концу тренировок концентрация достигает такой отметки, что болевые рецепторы чувствуют жжение, а атлет – дискомфорт. Небольшой перерыв позволяет снизить количество молочной кислоты, но она снижается не до своих первоначальных количеств. То есть получается, что чем больше бодибилдер тренируется, тем большее количество молочной кислоты накапливается у него в мышцах.

Важно: как показывает практика, накопление молочной кислоты начинается уже после 30-секундной тренировки с отягощением. Также есть мнение о том, что именно «молочка» негативно влияет на эффективность тренировок и не дает расти мышцам, поскольку у мышц нет возможности работать на полную мощность (из-за боли). Но такое мнение не совсем верно. Сразу же после того, как закончился подход, кровь поступает к тренируемым мышцам и вымывает молочную кислоту. С потоками крови она попадает в печень, где снова становится глюкозой, а после – используется организмом в качестве источника энергии. Такой замкнутый процесс получил название цикла Кори.

Весь этот круговой процесс приводит к увеличению кислотности крови и позволяет стимулировать омолаживающие процессы в организме и положительно воздействовать на общий тонус.

Важно: как показали многочисленные эксперименты и исследования, боль не является показателем того, что нагрузка на мышцу производится качественно, а эффективность от упражнения растет.

В спорте существует такое понятие, как запаздывающая мышечная боль (кратко – ЗМБ). Она представляет собой неприятные болевые ощущении, которые возникают каждый раз, когда мышцы получают непривычную для себя нагрузку: новый вид упражнений, увеличенное количество повторов, более длительный тренинг и другое. Суть этого явления заключается в том, что в мышечных волокнах возникают микроскопические разрывы. Такое положение вещей и приводит к тому, что резервы организма повышаются, секреция гормонов (необходимых для подавления воспалений и заживления) ускоряется, а синтез белков усиливается в несколько раз. В результате таких процессов мышцы прибавляют в объеме и весе.

Тут может сразу же возникнуть и другой вопрос: если ЗМБ является показателем мышечного роста, то боль должна появляться после каждой тренировки? Тут не так все просто. Человеческий организм имеет способность приспосабливаться к любым условиям, поэтому рано или поздно привычные нагрузки перестанут быть причиной мышечной боли. Но не нужно себя винить, просто тело адаптировалось к нагрузке, а значит, она стала не такой эффективной как раньше. А в целом, если вам нужно постоянное подтверждение тренировок в виде мышечной боли, то не стоит зацикливаться на одной программе тренинга слишком долго (дольше 2-3 месяцев). Также очень важно для такого эффекта увеличивать интенсивность выполнений.

Теперь самое время разбираться с существующими мифами о молочной кислоте. Первое, что можно очень часто услышать среди атлетов – молочка убивает мышцы. Правда ли это? На самом же деле, образование «молочки» - естественный процесс выработки энергии для преодоления стрессовых ситуаций, поэтому будет неверно заявлять о таком. Есть у нее и свои минусы. Так, молочная кислота распадается на ионы водорода и анионы лактата, которые являются причиной возникновения неприятных ощущений. Они способствуют и тому, что электрические сигналы от мозга к мышцам доходят медленнее, в результате чего и возникает усталость. Виной всему этому служит не сама молочная кислота, а продукты ее распада.

Если говорить о лактате молочной кислоты, то он как раз таки очень полезен для организма, который использует вещество в качестве топлива. Кроме того, лактат принимает участие в процессе притока углеводов. Если использовать его в чистом виде то можно добиться впечатляющего результата: ускорить все восстановительные процессы в организме, улучшить показатели работоспособности.

Вот и получается, что умелое управление молочной кислотой может значительно повысить уровень энергии в организме, а также снять усталость в мышцах.

Интересные факты о молочной кислоте

Но прежде, чем использовать всю мощь метода по увеличению эффективности тренировок, нужно окунуться в теоретические основы. Так что сначала рассмотрим 5 фактов, которые просто обязан знать каждый атлет.

«Молочка» не является причиной судорог и боли в мышцах

Болевые ощущения, которые проявляются на следующий день после тренировок, являются результатом микроскопических повреждений в мышцах. Отмершие кусочки мышц постепенно накапливаются, а после – выводятся из организма. Причиной возникновения судорог служат накопленная усталость и переизбыток отмерших клеток мышц. Так что запомните, молочная кислота (а точнее лактат) – источник энергии, который интенсивно расходуется во время занятий, а также после (для восстановления).

Расщепление глюкозы => образование молочной кислоты

В процессе расщепления глюкозы организм производит АТФ. Он и обеспечивает энергию для большого количества химических реакций, что протекают в организме. Молочная кислота образовывается без участия кислорода. Производство АТФ в совокупности с лактатом – процесс очень быстрый, но практически идеальный для того, чтобы удовлетворить энергетические потребности организма (даже если работать на максимуме своих возможностей).

Достаточное количество кислорода – необходимость для образования молочной кислоты

Как известно, если увеличить интенсивность тренировки, то работать в большей степени будут белые мышечные волокна (для сокращения используются углеводы). То есть получается, чем выше интенсивность нагрузки, тем больше молочной кислоты вырабатывается. Это значит только то, что скорость попадания «молочки» в кровь намного больше, чем скорость ее удаления. А вот кислород не оказывает никакого влияния на эти процессы.

Молочная кислота образовывается в результате расщепления углеводов

Количество «молочки» зависит от того, насколько быстро будут проходить процессы расщепления гликогена и глюкозы. Обычно в результате интенсивного тренинга организм использует жировые ткани для выработки энергии, если же использовать субмаксимальные веса, то тело будет получать энергию из углеводов. И как результат, чем больше расщепляется углеводов, тем больше молочной кислоты образовывается.

Правильная тренировка помогает в удалении молочной кислоты из мышц

И это правдивое мнение. Результата можно добиться такими методами:

Для быстрого и эффективного удаления молочной кислоты из мышц, нужно использовать правильные упражнения (супер сеты и сеты со сбрасыванием веса).

Ускоренное выведение молочной кислоты возможно, если чередовать кардионагрузки и высокообъемные тренировки с отягощениями. Не забывайте о том, что чем большее количество молочной кислоты у вас накапливается, тем лучше (ведь она является стимулом для выработки ферментов, что помогают использовать ее как топливо).

То есть получается, что эффективная тренировочная программа должна быть подобрана так, чтобы молочная кислота выводилась из организма уже во время тренировки. Если подводить черту под всем, что сказано выше, самое главное – организму нужна «молочка» (точнее лактат), более того, без него нельзя представить ни одну результативную тренировку. И это не удивительно, ведь лактат:

  • Является топливом, что необходимо для мышц и сердца во время тренировок;
  • Необходим для того, чтобы синтезировать гликоген печени;
  • Представляет собой один из важных компонентов, что входит в состав многих спортивных напитков;
  • Одновременно является причиной, как утомления мышц, так и предотвращает этот процесс.

И по традиции, в самом конце подводим итоги и даем некоторые напутствия на будущее.

Как избавиться себя от молочной кислоты? Практические рекомендации

Большое количество новичков в зале почти постоянно испытывают дискомфорт от тренировок, которые и приводят к жжению в мышцах. Но если запомнить простые советы (что идут дальше), уровень комфорта занятий повысится, а неприятные ощущения будут сведены к минимуму. Итак, чтобы накопление молочной кислоты проходило в малых количествах, нужно:

  • Начинать тренировку с разминки. Она должна быть легкой и разогревающей;
  • Растягивать мышцы после каждого повтора упражнения/после завершения сета;
  • Увеличивать вес нагрузки постепенно по мере того, как мышцы будут готовы к этому;
  • Не пропускать тренировки, чтобы мышцы привыкали к нагрузкам;
  • Полностью восстанавливаться после каждой тренировки.

На этом все. Если следовать простым советам и взять на вооружение приведенную информацию, можно без труда научиться управлять наиболее сильным катализатором интенсивности тренингов.

 

Понравилось? - Расскажи друзьям!

iq-body.ru

Молочная кислота - это... Что такое Молочная кислота?

Молочная кислота (лактат) — α-оксипропионовая (2-гидроксипропановая) кислота.

  • tпл 25—26 °C оптически активная + или — форма.
  • tпл 8 °C рацемическая форма.

Молочная кислота образуется при молочнокислом брожении сахаров, в частности в прокисшем молоке, при брожении вина и пива.

Была открыта шведским химиком Карлом Шееле в 780 году.

В 807 году Йенс Якоб Берцелиус выделил из мышц цинковую соль молочной кислоты.

Молочная кислота в организме человека и животных

Молочная кислота формируется при распаде глюкозы. Иногда называемая «кровяным сахаром», глюкоза является главным источником углеводов в нашем организме. Это основное топливо для мозга и нервной системы, так же как и для мышц во время физической нагрузки. Когда расщепляется глюкоза, клетки производят АТФ (аденозина трифосфат), который обеспечивает энергией большинство химических реакций в организме. Уровень АТФ определяет, как быстро и как долго наши мышцы смогут сокращаться при физической нагрузке.

Производство молочной кислоты не требует присутствия кислорода, поэтому этот процесс часто называют «анаэробным метаболизмом» (см. Анаэробная тренировка). Многие считают, что мышцы производят молочную кислоту, когда недополучают кислород из крови. Другими словами, вы находитесь в анаэробном состоянии. Однако, учёные[] утверждают, что молочная кислота образуется и в мышцах, получающих достаточно кислорода. Увеличение количества молочной кислоты в кровотоке свидетельствует лишь о том, что уровень её поступления превышает уровень удаления. Кислород не играет здесь существенной роли.

Зависимое от лактата производство АТФ очень незначительно, но имеет большую скорость. Это обстоятельство делает идеальным его использование в качестве топлива, когда нагрузка превышает 50 % от максимальной. При отдыхе и умеренной нагрузке организм предпочитает расщеплять жиры для получения энергии. При нагрузках в 50 % от максимума (порог интенсивности для большинства тренировочных программ) организм перестраивается на преимущественное потребление углеводов. Чем больше углеводов вы используете в качестве топлива, тем больше производство молочной кислоты.

Исследования показали, что у престарелых людей в головном мозге количество солей кислоты (лактатов) имеет повышенный уровень[2].

Регулятор обмена

Чтобы глюкоза могла проходить через клеточные мембраны, ей необходим инсулин. Молекула же молочной кислоты в два раза меньше молекулы глюкозы, и гормональная поддержка ей не нужна — она с лёгкостью сама проходит через клеточные мембраны.

Молочную кислоту можно обнаружить по следующим качественным реакциям:

  • Взаимодействие с n-оксидифенилом и серной кислотой:

При осторожном нагревании молочной кислоты с концентрированной серной кислотой она вначале образует уксусный альдегид и муравьиную кислоту; последняя немедленно разлагается:Ch4CH(OH)COOH → Ch4CHO + HCOOH (→ h3O + CO)Уксусный альдегид взаимодействует с n-оксидифенилом, причём, по-видимому, происходит конденсация в o-положении к OH-группе с образованием ,-ди(оксидифенил)этана:В растворе серной кислоты медленно окисляется в фиолетовый продукт неизвестного состава. Поэтому, как и при обнаружении гликолевой кислоты с помощью 2,7-диоксинафталина, в данном случае происходит взаимодействие альдегида с фенолом, при котором концентрированная серная кислота действует как конденсирующий агент и окислитель. Такую же цветную реакцию дают α-оксимасляная и пировиноградная кислоты.Выполнение реакции: В сухой пробирке нагревают в течение 2 минут на водяной бане при 85 °C каплю исследуемого раствора с  мл концентрированной серной кислоты. После этого охлаждают под краном до 28 °C, добавляют небольшое количество твёрдого n-оксидифенила и, перемешав несколько раз, дают постоять 0-30 минут. Фиолетовое окрашивание появляется постепенно и через некоторое время становится более глубоким. Открываемый минимум: ,5·0−6 г молочной кислоты.

  • Взаимодействие с подкисленным серной кислотой раствором перманганата калия

Выполнение реакции: В пробирку прилить мл молочной кислоты, а затем немного подкисленного серной кислотой раствора перманганата калия. Нагревать в течение 2 минут на слабом огне. Ощущается запах уксусной кислоты. С3Н6О3 + [O] = C3Н4O3 + h3O↑

Продуктом данной реакции может быть пировиноградная кислота С3Н4О3, которая тоже имеет запах уксусной кислоты.

С3Н6О3 + [O] = C3Н4O3 + h3O↑

Однако пировиноградная кислота при обычных условиях неустойчива и быстро окисляется до уксусной кислоты, поэтому реакция протекает согласно суммарному уравнению:

С3Н6О3 + 2[O] = Ch4COOH↑ + CO2↑ + h3O↑

Применение и получение

В пищевой промышленности используется как консервант, пищевая добавка E270.

Получают молочную кислоту молочнокислым брожением глюкозы (ферментативная реакция):

C6h22O6 → 2Ch4CH(OH)COOH + 2,8·04 Дж

См. также

Примечания

Ссылки

dic.academic.ru

Что такое молочная кислота? - Полезная информация для всех

Молочная кислота в организме человека и животных

Молочная кислота формируется при распаде глюкозы. Иногда называемая кровяным сахаром , глюкоза является главным источником углеводов в нашем организме. Это основное топливо для мозга и нервной системы, так же как и для мышц во время физической нагрузки. Когда расщепляется глюкоза, клетки производят АТФ (аденозина трифосфат) , который обеспечивает энергией большинство химических реакций в организме. Уровень АТФ определяет, как быстро и как долго наши мышцы смогут сокращаться при физической нагрузке. Производство молочной кислоты не требует присутствия кислорода, поэтому этот процесс часто называют анаэробным метаболизмом . Многие считают, что мышцы производят молочную кислоту, когда недополучают кислород из крови. Другими словами, вы находитесь в анаэробном состоянии. Однако, учные кто? утверждают, что молочная кислота образуется и в мышцах, получающих достаточно кислорода. Увеличение количества молочной кислоты в кровотоке свидетельствует лишь о том, что уровень е поступления превышает уровень удаления. Кислород не играет здесь существенной роли. Зависимое от лактата производство АТФ очень незначительно, но имеет большую скорость. Это обстоятельство делает идеальным его использование в качестве топлива, когда нагрузка превышает 50% от максимальной. При отдыхе и субмаксимальной нагрузке организм предпочитает расщеплять жиры для получения энергии. При нагрузках в 50% от максимума (порог интенсивности для большинства тренировочных программ) организм перестраивается на преимущественное потребление углеводов. Чем больше углеводов вы используете в качестве топлива, тем больше производство молочной кислоты.

Регулятор обмена

Чтобы глюкоза могла проходить через клеточные мембраны, ей необходим инсулин. Молекула же молочной кислоты в два раза меньше молекулы глюкозы, и гормональная поддержка ей не нужна она с лгкостью сама проходит через клеточные мембраны.

Качественные реакции

Молочную кислоту можно обнаружить по следующим качественным реакциям: Взаимодействие с n-оксидифенилом и серной кислотой:

При осторожном нагревании молочной кислоты с концентрированной серной кислотой она вначале образует уксусный альдегид и муравьиную кислоту; последняя немедленно разлагается: Ch4CH(OH)COOH #8594; Ch4CHO + HCOOH (#8594; h3O + CO) Уксусный альдегид взаимодействует с n-оксидифенилом, причм, по-видимому, происходит конденсация в o-положении к OH-группе с образованием 1,1-ди (оксидифенил) этана:

В растворе серной кислоты медленно окисляется в фиолетовый продукт неизвестного состава. Поэтому, как и при обнаружении гликолевой кислоты с помощью 2,7-диоксинафталина, в данном случае происходит взаимодействие альдегида с фенолом, при котором концентрированная серная кислота действует как конденсирующий агент и окислитель. Такую же цветную реакцию дают #945;-оксимасляная и пировиноградная кислоты. Выполнение реакции: В сухой пробирке нагревают в течение 2 минут на водяной бане при 85 C каплю исследуемого раствора с 1 мл концентрированной серной кислоты. После этого охлаждают под краном до 28 C, добавляют небольшое количество тврдого n-оксидифенила и, перемешав несколько раз, дают постоять 1030 минут. Фиолетовое окрашивание появляется постепенно и через некоторое время становится более глубоким. Открываемый минимум: 1,5 #215; 106 г молочной кислоты.

Молочная кислота образуется при молочнокислом брожении сахаров, в частности в прокисшем молоке, при брожении вина и пива.

Молочная кислота в организме человека и животных Молочная кислота формируется при распаде глюкозы. Иногда называемая кровяным сахаром , глюкоза является главным источником углеводов в нашем организме. Это основное топливо для мозга и нервной системы, так же как и для мышц во время физической нагрузки. Когда расщепляется глюкоза, клетки производят АТФ (аденозина трифосфат) , который обеспечивает энергией большинство химических реакций в организме. Уровень АТФ определяет, как быстро и как долго наши мышцы смогут сокращаться при физической нагрузке. Производство молочной кислоты не требует присутствия кислорода, поэтому этот процесс часто называют анаэробным метаболизмом . Многие считают, что мышцы производят молочную кислоту, когда недополучают кислород из крови. Другими словами, вы находитесь в анаэробном состоянии. Однако, учные кто? утверждают, что молочная кислота образуется и в мышцах, получающих достаточно кислорода. Увеличение количества молочной кислоты в кровотоке свидетельствует лишь о том, что уровень е поступления превышает уровень удаления. Кислород не играет здесь существенной роли. Зависимое от лактата производство АТФ очень незначительно, но имеет большую скорость. Это обстоятельство делает идеальным его использование в качестве топлива, когда нагрузка превышает 50% от максимальной. При отдыхе и субмаксимальной нагрузке организм предпочитает расщеплять жиры для получения энергии. При нагрузках в 50% от максимума (порог интенсивности для большинства тренировочных программ) организм перестраивается на преимущественное потребление углеводов. Чем больше углеводов вы используете в качестве топлива, тем больше производство молочной кислоты.

Регулятор обмена Чтобы глюкоза могла проходить через клеточные мембраны, ей необходим инсулин. Молекула же молочной кислоты в два раза меньше молекулы глюкозы, и гормональная поддержка ей не нужна она с лгкостью сама проходит через клеточные мембраны.

info-4all.ru

Молочная кислота — Википедия

Молочная кислота (лактат) — α-оксипропионовая (2-гидроксипропановая) кислота.

  • tпл 25—26 °C оптически активная (+)- или (-)-форма.
  • tпл 18 °C рацемическая форма.

Молочная кислота образуется при молочнокислом брожении сахаров, в частности, в прокисшем молоке, при брожении вина и пива.

Была открыта шведским химиком Карлом Шееле в 1780 году.

В 1807 году Йенс Якоб Берцелиус выделил из мышц цинковую соль молочной кислоты.

Молочная кислота в организме человека и животных[править]

Молочная кислота формируется при распаде глюкозы. Иногда называемая «кровяным сахаром», глюкоза является главным источником углеводов в нашем организме. Это основное топливо для мозга и нервной системы, так же как и для мышц во время физической нагрузки. Когда расщепляется глюкоза, клетки производят АТФ (аденозинтрифосфат), который обеспечивает энергией большинство химических реакций в организме. Уровень АТФ определяет, как быстро и как долго наши мышцы смогут сокращаться при физической нагрузке.

Производство молочной кислоты не требует присутствия кислорода, поэтому этот процесс часто называют «анаэробным метаболизмом» (см. Анаэробная тренировка). Ранее считалось, что мышцы производят молочную кислоту, когда недополучают кислород из крови. Другими словами, вы находитесь в анаэробном состоянии. Однако современные исследования показывают, что молочная кислота образуется и в мышцах, получающих достаточно кислорода. Увеличение количества молочной кислоты в кровотоке свидетельствует лишь о том, что уровень её поступления превышает уровень удаления[1][2]. Резкое увеличение (в 2—3 раза) уровня лактата в сыворотке крови наблюдается при тяжёлых расстройствах кровообращения, таких как геморрагический шок, острая левожелудочковая недостаточность и др., когда одновременно страдает и поступление кислорода в ткани и печеночный кровоток.

Зависимое от лактата производство АТФ очень незначительно, но имеет большую скорость. Это обстоятельство делает идеальным его использование в качестве топлива, когда нагрузка превышает 50 % от максимальной. При отдыхе и умеренной нагрузке организм предпочитает расщеплять жиры для получения энергии. При нагрузках в 50 % от максимума (порог интенсивности для большинства тренировочных программ) организм перестраивается на преимущественное потребление углеводов. Чем больше углеводов вы используете в качестве топлива, тем больше производство молочной кислоты.

Исследования показали, что у престарелых людей в головном мозге количество солей кислоты (лактатов) имеет повышенный уровень[3].

Регулятор обмена[править]

Чтобы глюкоза могла проходить через клеточные мембраны, ей необходим инсулин. Молекула же молочной кислоты в два раза меньше молекулы глюкозы, и гормональная поддержка ей не нужна — она с лёгкостью сама проходит через клеточные мембраны.

Молочную кислоту можно обнаружить по следующим качественным реакциям:

  • Взаимодействие с n-оксидифенилом и серной кислотой:

При осторожном нагревании молочной кислоты с концентрированной серной кислотой она вначале образует уксусный альдегид и муравьиную кислоту; последняя немедленно разлагается:Ch4CH(OH)COOH → Ch4CHO + HCOOH (→ h3O + CO)Уксусный альдегид взаимодействует с n-оксидифенилом, причём, по-видимому, происходит конденсация в o-положении к OH-группе с образованием 1,1-ди(оксидифенил)этана:Файл:1,1-ди(оксидифенил)этан.PNGВ растворе серной кислоты медленно окисляется в фиолетовый продукт неизвестного состава. Поэтому, как и при обнаружении гликолевой кислоты с помощью 2,7-диоксинафталина, в данном случае происходит взаимодействие альдегида с фенолом, при котором концентрированная серная кислота действует как конденсирующий агент и окислитель. Такую же цветную реакцию дают α-оксимасляная и пировиноградная кислоты.Выполнение реакции: В сухой пробирке нагревают в течение 2 минут на водяной бане при 85 °C каплю исследуемого раствора с 1 мл концентрированной серной кислоты. После этого охлаждают под краном до 28 °C, добавляют небольшое количество твёрдого n-оксидифенила и, перемешав несколько раз, дают постоять 10-30 минут. Фиолетовое окрашивание появляется постепенно и через некоторое время становится более глубоким. Открываемый минимум: 1,5·10−6 г молочной кислоты.

  • Взаимодействие с подкисленным серной кислотой раствором перманганата калия

Выполнение реакции: В пробирку прилить 1 мл молочной кислоты, а затем немного подкисленного серной кислотой раствора перманганата калия. Нагревать в течение 2 минут на слабом огне. Ощущается запах уксусной кислоты. С3Н6О3 + [O] = C3Н4O3 + h3O↑ Продуктом данной реакции может быть пировиноградная кислота С3Н4О3, которая тоже имеет запах уксусной кислоты. С3Н6О3 + [O] = C3Н4O3 + h3O↑ Однако пировиноградная кислота при обычных условиях неустойчива и быстро окисляется до уксусной кислоты, поэтому реакция протекает согласно суммарному уравнению: С3Н6О3 + 2[O] = Ch4COOH + CO2↑ + h3O

Применение и получение[править]

В пищевой промышленности используется как консервант, пищевая добавка E270.

Поликонденсацией молочной кислоты получают пластик PLA.

Получают молочную кислоту молочнокислым брожением глюкозы (ферментативная реакция):

C6h22O6 → 2Ch4CH(OH)COOH + 21,8·104 Дж

wp.wiki-wiki.ru

Молочная кислота — WiKi

Молочная кислота в организме человека и животных

Молочная кислота формируется при распаде глюкозы. Иногда называемая «кровяным сахаром» глюкоза является главным источником углеводов в нашем организме. Это основной источник энергии для мозга и нервной системы, так же как и для мышц во время физической нагрузки. Когда расщепляется глюкоза, клетки производят АТФ (аденозинтрифосфат), который обеспечивает энергией большинство химических реакций в организме. Уровень АТФ определяет, как быстро и как долго мышцы смогут сокращаться при физической нагрузке.

Производство молочной кислоты не требует присутствия кислорода, поэтому этот процесс её синтеза часто называют «анаэробным метаболизмом» (см. Анаэробная тренировка). Ранее считалось, что мышцы производят молочную кислоту, при нехватке кислорода в крови. Другими словами, организм находится в анаэробном состоянии. Однако современные исследования показывают, что молочная кислота образуется и в мышцах, получающих достаточно кислорода. Увеличение количества молочной кислоты в кровотоке свидетельствует лишь о том, что уровень её поступления превышает уровень удаления[1][2]. Резкое увеличение (в 2—3 раза) уровня лактата в сыворотке крови наблюдается при тяжёлых расстройствах кровообращения, таких как геморрагический шок, острая левожелудочковая недостаточность и др., когда одновременно страдает и поступление кислорода в ткани, и печёночный кровоток.

Зависимое от лактата производство АТФ очень незначительно, но имеет большую скорость. Это обстоятельство делает идеальным его использование в качестве источника энергии, когда нагрузка превышает 50 % от максимальной. При отдыхе и умеренной нагрузке организм предпочитает расщеплять жиры для получения энергии. При нагрузках в 50 % от максимума (порог интенсивности для большинства тренировочных программ) организм перестраивается на преимущественное потребление углеводов. Чем больше углеводов человек использует в качестве топлива, тем больше производство молочной кислоты.

Исследования показали, что у престарелых людей в головном мозге количество солей кислоты (лактатов) имеет повышенный уровень[3].

Регулятор обмена

Чтобы глюкоза могла проходить через клеточные мембраны, ей необходим инсулин. Молекула же молочной кислоты в два раза меньше молекулы глюкозы, и гормональная поддержка ей не нужна — она с лёгкостью сама проходит через клеточные мембраны.

Качественные реакции

Молочную кислоту можно обнаружить по следующим качественным реакциям:

  • Взаимодействие с n-оксидифенилом и серной кислотой:

При осторожном нагревании молочной кислоты с концентрированной серной кислотой она вначале образует уксусный альдегид и муравьиную кислоту; последняя немедленно разлагается:Ch4CH(OH)COOH → Ch4CHO + HCOOH (→ h3O + CO)Уксусный альдегид взаимодействует с n-оксидифенилом, причём, по-видимому, происходит конденсация в o-положении к OH-группе с образованием 1,1-ди(оксидифенил)этана: В растворе серной кислоты медленно окисляется в фиолетовый продукт неизвестного состава. Поэтому, как и при обнаружении гликолевой кислоты с помощью 2,7-диоксинафталина, в данном случае происходит взаимодействие альдегида с фенолом, при котором концентрированная серная кислота действует как конденсирующий агент и окислитель. Такую же цветную реакцию дают α-оксимасляная и пировиноградная кислоты.Выполнение реакции: В сухой пробирке нагревают в течение 2 минут на водяной бане при 85 °C каплю исследуемого раствора с 1 мл концентрированной серной кислоты. После этого охлаждают под краном до 28 °C, добавляют небольшое количество твёрдого n-оксидифенила и, перемешав несколько раз, дают постоять 10-30 минут. Фиолетовое окрашивание появляется постепенно и через некоторое время становится более глубоким. Открываемый минимум: 1,5·10−6 г молочной кислоты.

  • Взаимодействие с подкисленным серной кислотой раствором перманганата калия

Выполнение реакции: В пробирку прилить 1 мл молочной кислоты, а затем немного подкисленного серной кислотой раствора перманганата калия. Нагревать в течение 2 минут на слабом огне. Ощущается запах уксусной кислоты. С3Н6О3 + [O] = C3Н4O3 + h3O↑ Продуктом данной реакции может быть пировиноградная кислота С3Н4О3, которая тоже имеет запах уксусной кислоты. С3Н6О3 + [O] = C3Н4O3 + h3O↑ Однако пировиноградная кислота при обычных условиях неустойчива и быстро окисляется до уксусной кислоты, поэтому реакция протекает согласно суммарному уравнению: С3Н6О3 + 2[O] = Ch4COOH + CO2↑ + h3O

  • Взаимодействие с фенолятом железа

Описание реакции: Эта реакция называется реакцией Уффельмана и используется, например, в клинической медицине для определения присутствия молочной кислоты в желудочном соке, открыта Юлиусом Уффельманом[de] в 1880-х гг. Для проведения реакции нужно растворить одну каплю хлорида железа и 0,4 грамма фенола в 50 см3 воды. Затем добавить тестируемую жидкость, если в ней есть молочная кислота, то синий цвет раствора сменится жёлтым[4][5], поскольку образуется лактат железа.

Применение и получение

В пищевой промышленности используется как консервант, пищевая добавка E270.

Поликонденсацией молочной кислоты получают пластик PLA.

Получают молочную кислоту молочнокислым брожением глюкозы (ферментативная реакция):

C6h22O6 → 2Ch4CH(OH)COOH + 21,8·104 Дж

См. также

Примечания

Литература

Ссылки

ru-wiki.org

Образование молочной кислоты при гликолизе

    Молочная кислота образуется в мышцах в анаэробных условиях и является конечным продуктом гликолиза. Количество образовавшейся молочной кислоты эквивалентно количеству распавшейся глюкозы. Установлено, что содержание молочной кислоты в крови человека и животных повышается после мышечной работы. Особенно резкое увеличение количества молочной кислоты наблюдается после усиленных мышечных упражнений. Однако уровень молочной кислоты в крови быстро снижается, так как она поглощается печенью и превращается там в гликоген. Ресинтез гликогена из молочной кислоты не может протекать самопроизвольно и осуществляется только при условии сопряжения его с окислительными процессами, дающими энергию. По данным Пастера и Мейергофа, ресинтез гликогена сопряжен с окислением некоторой части молочной кислоты до углекислого газа и воды. Основная масса молочной кислоты при этом превращается в гликоген. В настоящее время установлено, что в аэробных условиях при достаточном притоке кислорода гликогек и глюкоза окисляются через стадию пировиноградной кислоты до СОг и Н2О, минуя образование молочной кислоты (см. стр. 172). [c.254]     Во второй пробе (где происходил гликолиз) развивается интенсивное красное окрашивание, указывающее на образование молочной кислоты. [c.155]

    Важнейшими из них, как в настоящее время установлено, являются 1) гликогенолиз или гликолиз (расщепление гликогена или глюкозы с образованием молочной кислоты, стр. 257) 2) тканевое дыхание (окисление до 02 и НгО тех или иных субстратов дыхания, главным образом углеводов) 3) перенос фосфатной группы с фосфокреатина на АДФ. Фосфорилирование самого креатина в мышечной ткани с образованием фосфокреатина в конечном счете осуществляется за счет энергии двух первых процессов. [c.426]

    О-глюкоза — ОСНОВНОЙ источник энергии живых организмов. При гликолизе 1 г/моля глюкозы выделяется 196,3 кДж. Ферментативное расщепление глюкозы в живой клетке протекает до образования молочной кислоты, сопряженной с образованием аденозинтрифосфорной кислоты (АТФ). [c.102]

    С другой стороны, в присутствии кислорода пировиноградная кислота полностью окисляется в СО2 и Н2О, причем этот процесс несравненно более выгоден с энергетической точки зрения, чем образование молочной кислоты. (Впрочем, затрата, сделанная в анаэробном процессе, в котором топливо используется неудовлетворительно, компенсируется регенерацией гликогена из молочной кислоты приведенным выше образом.) Мышечные экстракты содержат исключительно ферменты анаэробного гликолиза, а не дыхательные ферменты. Эти ферменты тесно связаны с некоторыми структурными элементами клеток, называемыми митохондриями. Поэтому окислительные процессы изучались со срезами органов или измельченными тканями. [c.254]

    Все жизненные процессы сопровождаются гликолизом — биологическим расщеплением гликогена, приводящим к образованию молочной кислоты для животных организмов гликоген является одним из важнейших источников энергии. Он содержится во всех клетках животного организма. Наиболее богаты гликогеном печень (у упитанных животных до 10—20% гликогена) и мышцы (до 4%)- Он содержится также в некоторых низших растениях, например в дрожжах и грибах крахмал некоторых высших растений по свойствам близок к гликогену. [c.711]

    Объектом для изучения анаэробного гликолиза уже с давних пор, наряду с дрожжевыми клетками, служит мышца. Оказалось, что гликолиз в мышцах и спиртовое брожение в дрожжевых клетках происходят по одному и тому же пути, следовательно, с образованием одинаковых промежуточных продуктов. Различия имеются только лишь на этапе превра-н1,ения пировиноградной кислоты, которая в мышцах при анаэробном гликолизе не подвергается декарбоксилированию, а восстанавливается с образованием молочной кислоты. Отсюда конечным продуктом анаэробного гликолиза в мышцах является молочная кислота, в то время как в дрожжевых клетках — этиловый спирт и углекислый газ. Необходимо отметить, что анаэробный распад углеводов с выделением молочной кислоты специфичен не только для мышц. Установлено, что подобный процесс происходит и в других тканях организма человека и животных. Он имеет место также у микроорганизмов (бактерий молочнокислого брожения), у которых анаэробный распад углеводов заканчивается образованием молочной кислоты. [c.288]

    Анаэробное превращение углеводов, начинающееся с гликогена или глюкозы и заканчивающееся образованием молочной кислоты, получило название гликоген о лиза или соответственно гликолиза. Термин гликогенолиз употребляется в тех случаях, когда исходным субстратом превращения является гликоген, а термин гликолиз — когда таковым является глюкоза. [c.249]

    Из схем видно, что основное отличие механизма гликолиза (анаэробного расщепления сахара с образованием молочной кислоты) от механизма окислительного распада углеводов сводится по существу к следующему при гликолизе пировиноградная кислота восстанавливается и превращается в молочную кислоту — конечный продукт анаэробного обмена, при дыхании образующаяся пировиноградная кислота подвергается дальнейшему окислению с образованием в конечном счете воды и СОз. [c.258]

    Насколько резко может усиливаться обмен веществ в мышцах при их сокращении, показывают следуют,ие цифры покоящиеся мышцы человека поглощают около 1,7 мл кислорода на 1 кг ткани в минуту при очень напряженной работе мышечная ткань потребляет за то же время около 180 мл кислорода на 1 кг веса, т. е. окислительный обмен при работе мышцы усиливается примерно в 100 раз. Еще больше увеличивается при работе мышцы в анаэробных условиях образование молочной кислоты. Так, например, в мышцах лягушки на 1 кг ткани в состоянии покоя образуется 0,2 мг молочной кислоты в течение часа, при тетаническом же сокращении — до 180 мг, т. е. интенсивность анаэробного гликолиза при работе возрастает почти в 1000 раз. [c.413]

    Работа 135. Образование молочной кислоты при гликолизе [c.180]

    Насколько резко может усиливаться обмен веществ в мышцах при их сокращении, показывают следующие цифры покоящиеся мышцы человека поглощают около 1,7 мл кислорода на 1 кг ткани в минуту при очень напряженной работе мышечная ткань потребляет за то же время около 180 мл кислорода на 1 кг веса, т. е. окислительный обмен при работе мышцы усиливается примерно в 100 раз. Еще больше увеличивается при работе мышцы в анаэробных условиях образование молочной кислоты. Интенсивность анаэробного гликолиза при работе может возрастать почти в 1000 раз. [c.437]

    Важнейшими из них, как в настоящее время установлено, являются 1) тканевое дыхание (окисление до СО2 и HgO тех или иных субстратов дыхания, главным образом углеводов) 2) гликогенолиз или гликолиз (расщепление гликогена или глюкозы с образованием молочной кислоты, стр. 265) 3) перенос фосфатной группы с фосфокреатина на АДФ  [c.450]

    Можно также отметить, что представлению о необходимости образования молочной кислоты для сокращения мышц противоречат данные Эмбдена, показавшего, что молочная кислота быстро образуется в мышце и продолжает накапливаться в течение нескольких первых секунд после расслабления. В охлажденной мышце гликолиз начинается вообще лишь через 1—2 сек после начала сокращения и заканчивается через 30 сек — 5 мин после его окончания. [c.451]

    В результате анаэробной фазы обмена глюкозы (гликолиз), заканчивающейся образованием молочной кислоты, образуется 3 молекулы АТФ на каждую глюкозную единицу мышечного гликогена. [c.388]

    Добавление глюкозы к взвеси пластинок приводит к ее потреблению, особенно отчетливо выраженному в анаэробных условиях, однако соответствующего нарастания содержания молочной кислоты при этом не наблюдалось. По-видимому, это можно объяснить не отсутствием гликолиза, поскольку потребление сахара имело место, но остановкой этого процесса на более ранних стадиях гликоли-тических превращений углеводов до образования молочной кислоты. [c.133]

    Нельзя с уверенностью сказать, прекращается ли гликолиз при замораживании взвеси пластинок или же этот процесс останавливается на более ранних стадиях расщепления углеводов, до образования молочной кислоты. Последнее предположение кажется вероятным потому, что в пробах пластинок с добавлением глюкозы, хранившихся при —20°, сохраняется способность к подавлению потребления кислорода в течение всего срока исследования. [c.135]

    В раковой ткани, в отличие от нормальной, гликогенолиз с образованием молочной кислоты идет также в аэробных условиях одновременно с дыханием. Раньше предполагали, что такой аэробный гликолиз идет теми же [c.502]

    Гликолиз представляет собой необратимый процесс, равновесие которого полностью смещено в сторону образования молочной кислоты, что можно объяснить значительным уменьшением свободной энергии (АС =—135,9 кДж/моль). В то же время большая часть этапов этого процесса имеет небольшие значения изменений свободной энергии. [c.419]

    Образование молочной кислоты в процессе гликолиза в зависимости от продолжительности упражнения [c.314]

    Сходство путей метаболизма в различных видах — один из основных принципов биохимии. Классические исследования, посвященные спиртовой ферментации дрожжей и образованию молочной кислоты в тканях млекопитающих, показали, что эти два процесса по существу протекают одинаково и отличаются лишь конечными стадиями, когда в дрожжах происходит анаэробное декарбоксилирование пирувата, а в мышечной ткани — нет. И в том, и в другом процессе НАД восстанавливается, а энергия накапливается в виде АТФ. Последние исследования других биологических механизмов образования, накопления и передачи энергии выявили некоторые интересные различия между видами, например наличие нескольких путей диссимиляции сахаров в бактериях, но все же наблюдается удивительное сходство этих механизмов. Многие промежуточные соединения одинаковы для всех видов. В живых клетках в качестве аккумулятора энергии всегда используется АТФ. Никотииамиднуклео-тиды участвуют во многих реакциях с переносом электрона триозофосфаты всегда участвуют в гликолизе. Белки, являющиеся основой живых организмов, во всех исследованных видах состоят приблизительно из 20 аминокислот. Эти аминокислоты, по-видимому,. в целом ряде организмов синтезируются одинаково, хотя точно установлено наличие двух путей в случае лизина. При этом высшие растения и бактерии используют различные пути, а грибы — оба. Это интересно при прослеживании эволюционных линий по био- [c.234]

    Следует подчеркнуть, что с энергетической точки зрения гликогенолиз, как и гликолиз, мало эффективны. Из всей потенциальной энергии глюкозного остатка молекулы гликогена только лишь часть становится доступной для использования клеткой при образовании из этого остатка двух молекул молочной кислоты. Остальное количество энергии (19 из 20 частей) остается в молекулах молочной кислоты. Однако, несмотря на малую энергетическую эффективность гликогенолиза, физиологическое значение его велико, особенно в тех случаях, когда в тканях организма ощущается недостаток кислорода. Так, например, в начальной фазе мышечной работы, когда доставка кислорода к мышце не соответствует потребности в нем, наблюдается усиленный распад гликогена с образованием молочной кислоты. [c.291]

    В большинстве тканей животных углеводы при аэробных условиях полностью окисляются, превращаясь в воду и углекислый газ, в то время как в отсутствие кислорода образуется молочная кислота. Л. Пастер впервые обратил внимание на тот факт, что гликолиз тормозится кислородом. Это явление вошло в науку под названием реакции Пастера . Значительно позже О. Варбург показал, что в эмбриональных тканях и тканях злокачественных опухолей гликолиз не снижается и в присутствии кислорода. Образование молочной кислоты в присутствии кислорода получило название аэробного гликолиза . [c.298]

    Исследованиями Палладина, его сотрудников и других изучены в головном мозге отдельные ферменты анаэробного гликолиза. Можно считать установленным, что распад углеводов с образованием молочной кислоты (анаэробный гликолиз) в нервной системе происходит по тому же пути, как и в других тканях. В ткани головного мозга имеет место также и аэробный гликолиз (образование молочной кислоты в присутствии кислорода). Следует, однако, отметить, что энергия углеводов в основном используется в результате их аэробного распада с образованием углекислого газа и воды. [c.564]

    Расчеты, проведенные на основании многочисленных экспериментов с глюкозой, содержащей в различных положениях углеродной цепи, показывают, что около 85-90% глюкозы, потребляемой мозгом взрослого животного, полностью окисляется до СО2 и Н2О около 5% расходуется в реакциях гликолиза с образованием молочной кислоты и лишь 5-7% использует- [c.147]

    Кривая связывания кислорода гемоглобином зависит от pH при данной величине р(Ог) сродство к кислороду уменьшается номере уменьшения pH (эффект Бора). Гликолиз представляет собой анаэробный процесс, приводящий к образованию молочной кислоты и диоксида углерода. Оба эти соединения имеют тенденцию к понижению pH и способствуют высвобождению кислорода из оксигемоглобина там, где в этом есть необходимость, В дезоксигемоглобине, напротив, содержатся немного более основные, чем у оксигемоглобина, группы (азот имидазола His-146 в р-цепях и His-122 в а-цепях, а также аминогрупп Val-1 в а-цепях), в силу чего дезоксигемоглобин связывает протон после высвобождения кислорода, что важно для обратного транспорта диоксида углерода к легким. Карбоангидраза катализирует образование бикарбоната в эритроцитах из диоксида углерода и воды, и ионы бикарбоната могут связываться с протонированными группами дезокси-гемоглобина. В легких дезоксигемоглобин перезаряжается кислородом, эффект Бора вызывает высвобождение бикарбоната, из которого под действием карбоангидразы образуется диоксид углерода, который затем выдыхается. Транспорт диоксида углерода дезоксигемоглобином приводит также к образованию производных карбаминовой кислоты с аминогруппами белка (схема (9) . Хотя оксигемоглобин также связывает диоксид углерода, у дезоксигемо-глобина эта способность выше ввиду большей доступности аминогрупп. [c.558]

    Гликолиз. Понятие гликолиз означает расщепление глюкозы. Первоначально этим термином обозначали только анаэробное брожение, завершающееся образованием молочной кислоты (лактата) или этанола и СО,. В настоящее время понятие гликолиз используется более широко для описания распада глюкозы, проходящего через образование глю-козо-6-фосфата, фруктозобисфосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин аэробный гликолиз в отлгиие от анаэробного гликолиза , завершающегося образованием молочной кислоты (лактата). [c.319]

    Гликолизом называют анаэробный распад углеводов в тканях с образованием молочной кислоты. Процесс гликолиза подробно изучен и включает в себя ряд отдельных реакций. В мышцах главным субстратом гликолиза является гликоген, который подвергается сначала ф о с-форолизу (распаду с присоединением фосфорной кислоты) и далее, через фосфорные эфиры гексоз, триоз и через пировиноградную кислоту распадается до молочной кислоты. Вследствие этого процесс этот часто называют также г л и-когенолизом. [c.153]

    Каскадный процесс, схематически показанный на рис. 25-11, в печени и скелетных мыпщах протекает одинаково вплоть до образования глюкозо-6-фос-фата. Но в мышцах нет глюкозо-6-фос-фатазы, и поэтому в них не образуется свободной глюкозы. Повышение концентрации глюкозо-6-фосфата здесь приводит к значительному увеличению скорости гликолиза с образованием молочной кислоты, в ходе которого вырабатывается АТР, доступный для использования в процессе сокращения. Как показали сравнительно недавние исследования, адреналин стимулирует распад гликогена в печени через еще один каскад усиления, параллельный тому, который показан на рис. 25-11. В этом втором каскадном процессе, который в опреде- [c.791]

    Реакцию катализирует фермент фосфопируватгидратаза (енолаза, КФ" 4.2.1.11). Фермент ингибируется фторидом (конечная концентрация фторида 0,02 М) особенно в присутствии фосфата. Считают, что ингибирующее влияние оказывает Mg2+-фтopфo фaтнь[й комплекс. Таким образом, добавление в инкубационную среду фторида прерывает гликолиз на стадии превращения фосфоглицериновых кислот и приводит к накоплению 3-фосфоглицерата. В этих условиях образования скольких-либо заметных количеств молочной кислоты не происходит. [c.54]

    Эти процессы настолько тесно интегрированы, что при аноксии образование молочной кислоты прямо пропорционально работе мышечного сокращения, и мышца способна переносить такие количества лактата, какие никогда не встречаются в других тканях. Таким образом, последнее функциональное требование, которое предъявляет мышечный гликолиз, — это возможность накопления больших количеств лактата и его последующего метаболизироваиия. [c.51]

    Механизм переноса Ог в полость пузыря связан со второй системой капилляров, находящейся уже в самом эпителии этого органа (рис. 110). Кровь попадает здесь в условия высокой кислотности, которую поддерживает весьма активная система аэробного гликолиза в эпителиальных клетках. Гликолитические ферменты этой ткани эффективно функционируют при высоких напряжениях Ог. Эффект Пастера (торможение гликолиза при высоком напряжении Ог) здесь отсутствует — либо благодаря особой форме фосфофруктокпназы, нечувствительной к ингибированию продуктами аэробного обмена, либо потому, что интенсивность аэробного обмена очень низка. Как бы то ни было, наблюдаемое закисление крови, поступающей в капилляры эпителия, вполне может быть отнесено за счет образования молочной кислоты. Кроме того, в эпителии имеется высокоактивная карбоангидраза, которая, по-видимому, способствует образованию нонов Н+. [c.355]

    Углеводный обмен во всякой живой клетке (живом веществе) представляет единый процесс одновременно протекающих связанных между собой реакций распада и синтеза органических веществ. В центре углеводного обмена у животных стоят гликогенсз и гликогенолиз, т. е. процессы образования и распада гликогена. Они протекают главным образом в печени. Гликоген может образоваться как из углеводов, так и из неуглеводных источников, таких, например, как некоторые аминокислоты, глицерин, молочная, пировиноградная и пропионовая кислоты, а также и из многих других простых соединений. Термин гликогенолиз обозначает собственно расщепление гликогена до глюкозы. Но теперь часто под этим словом понимают всю сумму процессов, ведущих к гликолитическому образованию молочной кислоты в том случае, когда исходным субстратом является не глюкоза, а гликоген. Под гликолизом понимают вообще процессы распада углеводов от начала, т. е. от глюкозы или гликогена, безразлично, и до конечных продуктов. [c.376]

    При сопротивлениях, составляющих более 50 % максимальной изометрической силы, кровоток через мышцу резко уменьшается, что сопровождается появлением локальной гипоксии. В этих условиях (при дефиците аэробной энергопродукции) значительно исчерпываются алактатные анаэробные резервы и в мышцах накапливается большое количество свободного креатина, заметно усиливается образование молочной кислоты в результате гликолиза. Из-за дефицита макроэргических соединений при выполнении большого объема работы происходит разрушение мышечных белков и накопление продуктов их распада (низкомолекулярных пептидов, аминокислот и т. п.). Продукты расщепления белков, как и свободный креатин, служат активаторами белкового синтеза в период отдыха после скоростно-силовой работы, когда восстанавливается нормальное снабжение тканей кислородом и усиливается доставка к ним питательных веществ. Накопление молочной кислоты при предельной работе и вызванное этим изменение внутримышечного осмотического давления способствуют задержанию в мышцах межклеточной жидкости, богатой питательными веществами. При систематическом повторении таких тренировок в мышцах существенно увеличивается содержание сократительных белков и возрастает общий объем мышечной массы. [c.387]

    При спиртовом брожении в процессе расщепления одной молекулы глюкозы образуется четыре молекулы АТФ (50 ккал, или 210 кдж). Из них две расходуются на функциональную деятельность и синтез. По расчетам некоторых авторов, при гликолизе и гликогенолизе в богатых энергией фосфорных связях аккумулируется 35—40 /о всей освобождающейся свободной энергни, остальные 60—65% рассеиваются в виде теплоты. Коэффициент полезного действия клеток, органов, работающих в анаэробных условиях, не превышает 0,4 (в аэробных 0,5). Эти расчеты основаны главны.м образом на данных, полученных на мышечных экстрактах и дрожжевом соке. В условиях живого организма мышечные клетки, органы и ткани утилизируют энергию, вероятно, значительно больше. С физиологической точки зрения процесс гликогенолиза и гликолиза имеет исключительно важное значение, особенно когда жизненные процессы осуществляются в условиях недостатка кислорода. Папример, при энергичной работе мышц, особенно в первой фазе деятельности, всегда наблюдается разрыв между доставкой кислорода в мышцы и его потребностью. В этом случае начальные энергетические затраты покрываются в значительной степени за счет гликогенолиза. Аналогичные явления наблюдаются при различных патологических состоя иях (гипоксия мозгз, сердца и т. п.). Кроме того, потенциальная энергия, заключенная в молочной кислоте, в конечном счете не теряется для высокоорганизованного организма. Образующаяся молочная кислота быстро пере.ходит из мышц в кровь и далее доставляется в печень, где снова превращается в гликоген. Анаэробный распад углеводов с образованием молочной кислоты очень распространен в природе он наблюдается не только в мышцах, но и в других тканях животного организма. [c.334]

    Единство и теснейшая связь процессов брожения и дыхания растений, микроорганизмов и животных вытекают из того факта, что почти у всех живых организмов имеются одинаковые ферменты и те же основные промежуточные продукты, которые образуются в процессе их жизнедеятельности. Начальные этапы распада углеводов при анаэробном и аэробно.м дыхании одинаковы и начинаются с образования фосфорных эфиров глюкозы, именно глюкозо-1-фосфата, глюкозо-6-фосфата и фруктозо-1,6-дифосфата. Фосфорилирование глюкозы является необходимым условием как при аэробном распаде углеводов до углекислого газа и воды во время дыхания, так и при распаде углеводов в анаэробных условиях с образованием молочной кислоты и спирта. Пути аэробного и анаэробного распада углеводов расходятся на стадии образования пировиноградной кислоты в животные тканях или соответственно уксусного альдегида в дрожжевых клетках. Пировиноградная кислота занимает центральное положение в обмене углеводов. Она образуется из глюкозы (после фосфорилирования) или из гликогена (после фосфоролиза) путем нормального гликолиза. В анаэробных условиях пировиноградная кислота либо распадается в результате прямого декарбоксилирования, как это наблюдается в дрожжах, либо восстанавливается водородом до молочной кислоты, как это имеет место в мышцах. Спирт и молочная кислота являются конечными продуктами анаэробного обмена. В аэробных условиях пи-роаиноградная кислота полностью окисляется до углекислого газа и воды, [c.339]

    Между гликолизом и аэробным окислением углеводов существует тесная связь. Эта связь заключается прежде всего в том, что первые стадии гликолиза и аэробного окисления углеводов одинаковы. Расхождение путей анаэробного и аэробного распада начинается на стадии дальнейшего превращения пировиноградной кислоты, которая в отсутствие кислорода восстанавливается за счет водорода восстановлен1юй кодегидразы (К0Ш2) с образованием молочной кислоты в присутствии же кислорода она подвергается окислительному декарбоксилированию. При аэробном окислении углеводов по пентозному циклу расхождение путей начинается на стадии образования глюкозо-6-фосфорной кислоты. [c.298]

    Что же касается механизма реакции Пастера, то он остается еще недостаточно выясненным, хотя для его объяснения существует ряд гипотез. Одна из этих гипотез указывает на то, что прекращение гликолиза при аэробных условиях является скорее кажущимся, чем действительным. В присутствии кислорода в некоторых тканях, например в мышечной, часть образующейся при гликолизе молочной кислоты окисляется до углекислого газа и воды с освобождением энергии, которая используется частично для ресинтеза из оставшейся части молочной кислоты гликогена. Следовательно, в этом случае в тканях образование молочной кислоты не прекраш.ается в присутствии кислорода. Сбережение запасов гликогена достигается тем, что некоторая, и при этом большая, часть образовавшейся молочной кислоты в присутствии кислорода снова превращается в гликоген. Другие гипотезы объяс 1яют реакцию Пастера тем, что кислород прекращает гликолиз, воздействуя на ферменты, катализирующие тот пли иной этап гликолиза, прекращая, или тормозя, их действие. Некоторые ферменты гликолиза содержат важные для проявления их действия сульфгидрильные группы (—5Н). Среди этих ферментов находится и дегидраза фосфоглицеринальдегида. Кислород окислением сульфгидрильных групп ферментов может приостановить гликолиз. [c.298]

chem21.info


Twitter
Нравится

Поиск по сайту

Email рассылка

Узнавай первым

об обновлениях на сайте по Email БЕСПЛАТНО! Как только на сайте появятся новые посты, видео или фото, Ты сразу же будешь извещен об этом одним из первых.

Подробнее об этом

Новое на форуме

Нет сообщений для показа