О лечении стафилококковой инфекции. Бактериофаг фото


Как действует бактериофаг | Журнал Популярная Механика

У всех существ, обитающих на земле, есть микроскопические паразиты — вирусы. Есть свои вирусы и у бактерий. Цикл размножения бактериальных вирусов неизбежно заканчивается гибелью микроба. Чтобы подчеркнуть такую особенность, один из первооткрывателей этого эффекта, Феликс Д’Эрель, придумал специальное название — «бактериофаги», в переводе с греческого — «пожиратели бактерий».

Константин Мирошников

27 марта 2018 18:30

В конце ХХ века стало ясно, что бактерии безусловно доминируют в биосфере Земли, составляя более 90% ее биомассы. У каждого вида имеется множество специализированных типов вирусов. По предварительным оценкам, число видов бактериофагов составляет около 1015. Чтобы понять масштаб этой цифры, можно сказать, что если каждый человек на Земле будет каждый день открывать по одному новому бактериофагу, то на описание всех их понадобится 30 лет. Таким образом, бактериофаги — самые малоизученные существа в нашей биосфере. Большинство известных сегодня бактериофагов принадлежит к отряду Caudovirales — хвостатые вирусы. Их частицы имеют размер от 50 до 200 нм. Хвост разной длины и формы обеспечивает присоединение вируса к поверхности бактерии-хозяина, головка (капсид) служит хранилищем для генома. Геномная ДНК кодирует структурные белки, формирующие «тело» бактериофага, и белки, которые обеспечивают размножение фага внутри клетки в процессе инфекции. Можно сказать, что бактериофаг — это природный высокотехнологичный нанообъект. Например, хвосты фагов представляют собой «молекулярный шприц», который протыкает стенку бактерии и, сокращаясь, впрыскивает свою ДНК внутрь клетки.

Как действует бактериофаг Как действует бактериофаг Бактериофаги для размножения используют аппарат бактериальной клетки, «перепрограммируя» его на производство новых копий вирусов. Последний этап этого процесса — лизис, уничтожение бактерии и освобождение новых бактериофагов.

С этого момента начинается инфекционный цикл. Его дальнейшие этапы состоят из переключения механизмов жизнедеятельности бактерии на обслуживание бактериофага, размножение его генома, построение множества копий вирусных оболочек, упаковки в них ДНК вируса и, наконец, разрушение (лизис) хозяйской клетки. У каждого этапа существует множество нюансов, имеющих глубокий эволюционный и экологический смысл. Ведь бактерии и их вирусные паразиты сосуществуют сотни миллионов, если не миллиарды лет. И эта борьба за выживание не закончилась ни тотальным уничтожением одноклеточных, ни приобретением тотальной устойчивости к фагам и бесконтрольным размножением бактерий. Помимо постоянного эволюционного соревнования механизмов защиты у бактерий и нападения у вирусов, причиной сложившегося равновесия можно считать и то, что бактериофаги специализировались по своему инфекционному действию. Если имеется крупная колония бактерий, где своих жертв найдут и следующие поколения фагов, то уничтожение бактерий литическими (убивающими, дословно — растворяющими) фагами идет быстро и непрерывно. Если потенциальных жертв маловато или внешние условия не слишком подходят для эффективного размножения фагов, то преимущество получают фаги с лизогенным циклом развития. В этом случае после внедрения внутрь бактерии ДНК фага не сразу запускает механизм инфекции, а до поры до времени существует внутри клетки в пассивном состоянии, зачастую внедряясь в бактериальный геном. В таком состоянии профага вирус может существовать долго, проходя вместе с хромосомой бактерии циклы деления клетки. И лишь когда бактерия попадает в благоприятную для размножения среду, активируется литический цикл инфекции. При этом, когда ДНК фага освобождается из бактериальной хромосомы, часто захватываются и соседние участки бактериального генома, а их содержимое в дальнейшем может перенестись в следующую бактерию, которую заразит бактериофаг. Этот процесс (трансдукция генов) считается важнейшим средством переноса информации между прокариотами — организмами без клеточных ядер.

Фотография, сделанная с помощью электронного микроскопа, показывает процесс закрепления бактериофагов (колифагов T1) на поверхности бактерии E. coli.

Все эти молекулярные тонкости не были известны во втором десятилетии ХХ века, когда были открыты «невидимые инфекционные агенты, уничтожающие бактерий». Но и без электронного микроскопа, с помощью которого в конце 1940-х впервые удалось получить изображения бактериофагов, было понятно, что они способны уничтожать бактерии, в том числе и болезнетворные. Это свойство было незамедлительно востребовано медициной. Первые попытки лечения фагами дизентерии, раневых инфекций, холеры, тифа и даже чумы были проведены достаточно аккуратно, и успех выглядел вполне убедительно. Но после начала массового выпуска и использования фаговых препаратов эйфория сменилась разочарованием. О том, что такое бактериофаги, как производить, очищать и применять их лекарственные формы, было известно еще очень мало. Достаточно сказать, что по результатам предпринятой в США в конце 1920-х годов проверки во многих промышленных фагопрепаратах собственно бактериофагов вообще не оказалось.

Вирусная атака Вирусная атака

Проблема с антибиотиками

Вторую половину ХХ века в медицине можно назвать «эрой антибиотиков». Однако еще первооткрыватель пенициллина Александр Флеминг в своей нобелевской лекции предупреждал, что устойчивость микробов к пенициллину возникает довольно быстро. До поры до времени антибиотикоустойчивость компенсировалась разработкой новых типов противомикробных лекарств. Но с 1990-х годов стало ясно, что человечество проигрывает «гонку вооружений» против микробов. Виновато прежде всего бесконтрольное применение антибиотиков не только в лечебных, но и в профилактических целях, причем не только в медицине, но и в сельском хозяйстве, пищевой промышленности и быту. В результате устойчивость к этим препаратам начала вырабатываться не только у болезнетворных бактерий, но и у самых обычных микроорганизмов, живущих в почве и воде, делая из них «условных патогенов». Такие бактерии комфортно существуют в медицинских учреждениях, заселяя сантехнику, мебель, медицинскую аппаратуру, порой даже дезинфицирующие растворы. У людей с ослабленным иммунитетом, каких в больницах большинство, они вызывают тяжелейшие осложнения.

Бактериофаг — не живое существо, а молекулярный наномеханизм, созданный природой. Хвост бактериофага — это шприц, который протыкает стенку бактерии и впрыскивает вирусную ДНК, которая хранится в головке (капсиде) внутрь клетки.

Неудивительно, что медицинское сообщество бьет тревогу. В прошедшем, 2012 году гендиректор ВОЗ Маргарет Чен выступила с заявлением, предсказывающим конец эры антибиотиков и беззащитность человечества перед инфекционными заболеваниями. Впрочем, практические возможности комбинаторной химии — основы фармакологической науки — далеко не исчерпаны. Другое дело, что разработка противомикробных средств — очень дорогой процесс, не приносящий таких прибылей, как многие другие лекарства. Так что страшилки о «супербактериях» — это скорее предостережение, побуждающее людей к поискам альтернативных решений.

На медицинской службе

Вполне логичным выглядит возрождение интереса к использованию бактериофагов — естественных врагов бактерий — для лечения инфекций. Действительно, за десятилетия «эры антибиотиков» бактериофаги активно служили науке, но не медицине, а фундаментальной молекулярной биологии. Достаточно упомянуть расшифровку «триплетов» генетического кода и процесса рекомбинации ДНК. Сейчас о бактериофагах известно достаточно, чтобы обоснованно выбирать фаги, подходящие для терапевтических целей.

www.popmech.ru

«Бактериофаги»

ФГБОУ ВПО «Марийский Государственный Университет»

Биолого-Химический факультет

кафедра Биохимии и Физиологии

Реферат по Микробиологии и основам Вирусологии

на тему:

Выполнила:

студентка III курса

группы БПГ-21

Чеснокова Елена

Проверила:

доцент, к.б.н.

Гажеева Т.П.

Йошкар-Ола, 2011

Оглавление

Оглавление 2

Вступление 3

Бактериофаги. Их роль в биосфере 4

Строение бактериофагов 6

Взаимодействие бактериофага с бактериальными клетками 7

Жизненный цикл 9

Систематика бактериофагов 10

Применение 11

В медицине 11

В биологии 11

В микробиологической промышленности 12

Основные стадии развития и простейшие методы исследования бактериофагов 13

Список источников информации 17

Вступление

Английский бактериолог Фредерик Туорт1 в статье 1915 года описал инфекционную болезнь стафилококков, инфицирующий агент проходил через фильтры, и его можно было переносить от одной колонии к другой.

Независимо от Фредерика Туорта французско-канадский микробиолог Феликс Д’Эрель2 3 сентября 1917 год сообщил об открытии бактериофагов. Наряду с этим известно, что российский микробиолог Николай Фёдорович Гамалея3 ещё в 1898 году, впервые наблюдал явление лизиса бактерий (сибиреязвенной палочки) под влиянием перевиваемого агента.

После открытия явлений бактериофагии Д’Эрелль развил учение о том, что бактериофаги патогенных бактерий, являясь их паразитами, играют большую роль в патогенезе инфекций, обеспечивая выздоровление больного организма, а затем создания специфического иммунитета. Это положение привлекло к явлению бактериофагии внимание многих исследователей, которые предполагали найти в фагах важное средство борьбы с наиболее опасными инфекционными болезнями человека и животных.

Также Феликс Д’Эрель выдвинул предположение, что бактериофаги имеют корпускулярную природу. Однако только после изобретения электронного микроскопа удалось увидеть и изучить ультраструктуру фагов. Долгое время представления о морфологии и основных особенностях фагов основывались на результатах изучения фагов Т-группы — Т1, Т2,…, Т7, которые размножаются на Е. coli (кишечная палочка) штамма B. Однако с каждым годом появлялись новые данные, касающиеся морфологии и структуры разнообразных фагов, что обусловило необходимость их морфологической классификации.

Бактериофаги. Их роль в биосфере

Бактериофаги (фаги) (от др.-греч. φᾰγω — «пожираю») — вирусы, избирательно поражающие бактериальные клетки. Чаще всего бактериофаги размножаются внутри бактерий и вызывают их лизис4. Как правило, бактериофаг состоит из белковой оболочки и генетического материала одноцепочечной или двуцепочечной нуклеиновой кислоты (ДНК или, реже, РНК). Размер частиц приблизительно от 20 до 200 нм.

Структура типичного миовируса бактериофага (рис. 1).

Бактериофаги представляют собой наиболее многочисленную, широко распространенную в биосфере и, предположительно, наиболее эволюционно древнюю группу вирусов. Приблизительный размер популяции фагов составляет более 1030 фаговых частиц.

В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат (почва, выделения человека и животных, вода и т. д.) микроорганизмами, тем в большем количестве в нём встречаются соответствующие фаги. Так, фаги, лизирующие клетки всех видов почвенных микроорганизмов, находятся в почвах. Особенно богаты фагами черноземы и почвы, в которые вносились органические удобрения.

Бактериофаги выполняют важную роль в контроле численности микробных популяций, в автолизе стареющих клеток, в переносе бактериальных генов, выступая в качестве векторных «систем».

Действительно, бактериофаги представляют собой один из основных подвижных генетических элементов. Посредством трансдукции они привносят в бактериальный геном новые гены. Было подсчитано, что за 1 секунду могут быть инфицированы 1024 бактерий. Это означает, что постоянный перенос генетического материала распределяется между бактериями, обитающими в сходных условиях.

Высокий уровень специализации, долгосрочное существование, способность быстро репродуцироваться в соответствующем хозяине способствует их сохранению в динамичном балансе среди широкого разнообразия видов бактерий в любой природной экосистеме. Когда подходящий хозяин отсутствует, многие фаги могут сохранять способность к инфицированию на протяжении десятилетий, если не будут уничтожены экстремальными веществами либо условиями внешней среды.

studfiles.net

Лечение стафилококковой инфекции. Фото

Стафилококковая инфекция уже многие времена остается одной из самых многочисленных и распространенных в здравоохранении. Лечение стафилококковой инфекции в ряде случаев затруднено из-за развившейся в последние годы резистентности бактерий ко многим противомикробным препаратам.

золотистый стафилококк

Рис. 1. На фото золотистый стафилококк.

Лечение стафилококковой инфекции должно быть направлено как на самого возбудителя, так и на макроорганизм. Схема лечения подбирается строго индивидуально. Лечение легких форм инфекции ограничивается симптоматической терапией. При тяжелом течении инфекции применяется комплексная терапия:

  • антибиотикотерапия,
  • применение противостафилококковых препаратов — противостафилококкового иммуноглобулина, плазмы, анатоксина и стафилококкового бактериофага,
  • применение по показаниям хирургических методов лечения,
  • дезинтоксикационная терапия,
  • стимуляция защитных сил организма.

Новорожденные и недоношенные дети госпитализируются в стационар при малейших подозрениях на развитие стафилококковой инфекции.

Хороший иммунитет предотвращает развитие инфекции и значительно ослабляет симптомы заболевания

стафилококковая пиодермия у детей

Рис. 2. Стафилококковая пиодермия у детей младшего возраста.

Антибактериальные препараты

В связи с развившейся в последние десятилетия полирезистентностью (устойчивостью) стафилококков к целой группе антибиотиков стафилококковую инфекцию сегодня лечат современными антибиотиками:

  • полусинтетическими и пенициллиназоустойчивыми пенициллинами (Амоксиклав, Нафициллин),
  • антибиотиками группы аминогликозидов (Неомицин, Канамицин),
  • цефалоспоринами 3-го и 4-го поколения (Цефтриаксон, Цефатоксим, Цефепим, Зиннат и др),
  • антибиотиками группы макролидов (Кларитромицин Азитромицин Джозамицин),
  • антибиотиками группы тетрациклинов (Доксициклин, Юнидокс-солютаб),
  • антибиотиками других групп (Ванкомицин, Клиндамицин, Линкомицин).
  • природным антибиотиком Фузидовая (фузидиевая) кислота.
пиодермия у детей

Рис. 3. На фото пиодермия у детей старшего возраста.

к содержанию ↑

Специфическое лечение стафилококковой инфекции

Для специфического лечения стафилококковой инфекции применяются противостафилококковые препараты, которые представлены противостафилококковым иммуноглобулином, противостафилококковой плазмой, стафилококковым анатоксином и стафилококковым бактериофагом.

Антистафилококковый иммуноглобулин

Антистафилококковый иммуноглобулин — это раствор, содержащий антитела класса G к целому ряду патогенных штаммов стафилококка, в том числе устойчивых к действию пенициллина. Получают препарат из сыворотки и плазмы доноров. Препарат вводится внутримышечно. Его доза и длительность лечения зависят от тяжести заболевания, возраста пациента и его веса. Показаниями к применению антистафилококкового иммуноглобулина у детей раннего возраста служат любые проявления стафилококковой инфекции. Применение антистафилококкового иммуноглобулина вместе с антибиотиками дают хороший результат в лечении целого ряда заболеваний. Тяжелые генерализованные формы стафилококковой инфекции у детей, в том числе сепсис, являются показанием к внутривенному введению гипериммунного антистафилококкового иммуноглобулина.

антистафилококковый иммуноглобулин

Рис. 4. На фото антистафилококковый иммуноглобулин.

Гипериммунная антистафилококковая плазма

Одним из видов специфического лечения является применение гипериммунной антистафилококковой плазмы. В состав гипериммунной антистафилококковой плазмы входят противостафилококковые антитела, которые губительно действуют на бактерии. Препарат вводится внутривенно несколько раз с интервалом в 1-3 дня.

Стафилококковый анатоксин

Стафилококковый анатоксин стимулирует формирование в организме больного антистафилококкового иммунитета, что проявляется выработкой антител против стафилококкового экзотоксина.

  • Показаниями к применению стафилококкового анатоксина являются острая и хроническая стафилококковая инфекция, проявляющаяся в виде фурункулеза, гидраденита, панариция, флегмоны, мастита, гинекологических и урологических заболеваний, заболеваний уха, горла и носа.
  • Препарат вводят с профилактической целью лицам, чья работа связана с повышенным риском инфицирования стафилококками — рабочим промышленных предприятий и сельского хозяйства.
  • Препарат вводится донорам с целью получения антистафилококковой плазмы и антистафилококкового иммуноглобулина.

Стафилококковый анатоксин вводится подкожно через каждые 1-2 дня в возрастающей дозировке и показан к применению только взрослым.

стафилококковый анатоксин и стафилококковый бактериофаг

Рис. 5. На фото стафилококковый анатоксин и стафилококковый бактериофаг. Препараты широко применяются как специфическое лечение стафилококковой инфекции.

Стафилококковый бактериофаг

Способностью уничтожать золотистые стафилококки обладает стафилококковый бактериофаг. Бактериофаги («пожиратели») представляют собой вирусы, разрушающие клетки бактерий. Стафилококки способны вырабатывать устойчивость к бактериофагам, поэтому перед применением препарата следует определять чувствительность фагов к возбудителям.

Стафилококковый бактериофаг применяется при заболеваниях носоглотки, верхних и нижних дыхательных путей, желудочно-кишечного тракта, хирургических и урогенитальных инфекциях, гнойно-воспалительных заболеваниях новорожденных и детей грудного возраста, в том числе при сепсисе.

  • Стафилококковый бактериофаг применяется в виде раствора и мази для орошения и примочек, в виде тампонов и смазывания пораженных участков. Препарат вводится в очаг поражения, применяется для обкалывания мест поражения, вводится под основание воспалительных инфильтратов.
  • При глубоких пиодермиях стафилококковый бактериофаг вводится внутрикожно.
  • Стафилококковый бактериофаг можно вводить в брюшную и плевральную полости, внутрь суставов и полость мочевого пузыря.
  • При стафилококковом поражении кишечника и дисбактериозе стафилококковый бактериофаг применяется через рот и вводится непосредственно в прямую кишку в жидком виде или свечей.
бактериофаг

Рис. 6. Рисунок 8 и 9. На фото бактериофаг (слева) и схематическое изображение бактериофага (справа).

к содержанию ↑

Неспецифические методы повышения защитных сил организма

microbak.ru

Строение бактериофагов

Бактериофаги различаются по химической структуре, типу нуклеиновой кислоты5, морфологии и характеру взаимодействия с бактериями. По размеру бактериальные вирусы в сотни и тысячи раз меньше микробных клеток.

Рис. 2. Строение бактериофага

1 – головка, 2 – хвост, 3 – нуклеиновая кислота, 4 – капсид, 5 – «воротничок», 6 – белковый чехол хвоста, 7 – фибрилла хвоста, 8 – шипы, 9 – базальная пластинка.

Типичная фаговая частица (вирион) состоит из головки и хвоста. Длина хвоста обычно в 2 – 4 раза больше диаметра головки. В головке содержится генетический материал – одноцепочечная или двуцепочечная РНК или ДНК с ферментом транскриптазой в неактивном состоянии, окруженная белковой или липопротеиновой оболочкой – капсидом, сохраняющим геном вне клетки.

Нуклеиновая кислота и капсид вместе составляют нуклеокапсид. Бактериофаги могут иметь икосаэдральный капсид, собранный из множества копий одного или двух специфичных белков. Обычно углы состоят из пентамеров белка, а опора каждой стороны из гексамеров того же или сходного белка. Более того, фаги по форме могут быть сферические, лимоновидные или плеоморфные. Хвост представляет собой белковую трубку — продолжение белковой оболочки головки, в основании хвоста имеется АТФаза, которая регенерирует энергию для инъекции генетического материала. Существуют также бактериофаги с коротким отростком, не имеющие отростка и нитевидные.

Фаги, как и все вирусы, являются абсолютными внутриклеточными паразитами. Хотя они переносят всю информацию для запуска собственной репродукции в соответствующем хозяине, у них отсутствуют механизмы для выработки энергии и рибосомы для синтеза белка. У некоторых фагов в геноме содержится несколько тысяч оснований, тогда как фаг G, самый крупный из секвенированных фагов, содержит 480 000 пар оснований — вдвое больше среднего значения для бактерий, хотя всё же недостаточного количества генов для важнейшего бактериального органоида как рибосомы.

Взаимодействие бактериофага с бактериальными клетками

По характеру взаимодействия бактериофага с бактериальной клеткой различают вирулентные и умеренные фаги. Вирулентные фаги могут только увеличиваться в количестве посредством литического цикла. Процесс взаимодействия вирулентного бактериофага с клеткой складывается из нескольких стадий: адсорбции бактериофага на клетке, проникновения в клетку, биосинтеза компонентов фага и их сборки, выхода бактериофагов из клетки.

Рис. 3. Адсорбция бактериофагов на поверхности бактериальной клетки

Первоначально бактериофаги прикрепляются к фагоспецифическим рецепторам на поверхности бактериальной клетки. Хвост фага с помощью ферментов, находящихся на его конце (в основном лизоцима), локально растворяет оболочку клетки, сокращается и содержащаяся в головке ДНК инъецируется в клетку, при этом белковая оболочка бактериофага остается снаружи. Инъецированная ДНК вызывает полную перестройку метаболизма клетки: прекращается синтез бактериальной ДНК, РНК и белков. ДНК бактериофага начинает транскрибироваться с помощью собственного фермента транскриптазы, который после попадания в бактериальную клетку активируется. Синтезируются сначала ранние, а затем поздние иРНК, которые поступают на рибосомы клетки-хозяина, где синтезируются ранние (ДНК-полимеразы, нуклеазы) и поздние (белки капсида и хвостового отростка, ферменты лизоцим, АТФаза и транскриптаза) белки бактериофага. Репликация ДНК бактериофага происходит по полуконсервативному механизму и осуществляется с участием собственных ДНК-полимераз. После синтеза поздних белков и завершения репликации ДНК наступает заключительный процесс — созревание фаговых частиц или соединение фаговой ДНК с белком оболочки и образование зрелых инфекционных фаговых частиц.

Продолжительность этого процесса может составлять от нескольких минут до нескольких часов. Затем происходит лизис клетки, и освобождаются новые зрелые бактериофаги. Иногда фаг инициирует лизирующий цикл, что приводит к лизису клетки и освобождению новых фагов. В качестве альтернативы фаг может инициировать лизогенный цикл, при котором он вместо репликации обратимо взаимодействует с генетической системой клетки-хозяина, интегрируясь в хромосому или сохраняясь в виде плазмиды. Таким образом, вирусный геном реплицируется синхронно с ДНК хозяина и делением клетки, а подобное состояние фага называется профагом. Бактерия, содержащая профаг, становится лизогенной до тех пор, пока при определенных условиях или спонтанно профаг не будет стимулирован на осуществление лизирующего цикла репликации. Переход от лизогении к лизису называется лизогенной индукцией или индукцией профага. На индукцию фага оказывает сильное воздействие состояние клетки хозяина предшествующее индукции, также как наличие питательных веществ и другие условия, имеющие место быть в момент индукции. Скудные условия для роста способствуют лизогенному пути, тогда как хорошие условия способствуют лизирующей реакции.

Очень важным свойством бактериофагов является их специфичность: бактериофаги лизируют культуры определенного вида, более того, существуют так называемые типовые бактериофаги, лизирующие варианты внутри вида, хотя встречаются поливалентные бактериофаги, которые паразитируют в бактериях разных видов.

studfiles.net

Бактериофаги — WiKi

Бактериофа́ги или фа́ги (от др.-греч. φᾰγω «пожираю») — вирусы, избирательно поражающие бактериальные клетки. Чаще всего бактериофаги размножаются внутри бактерий и вызывают их лизис. Как правило, бактериофаг состоит из белковой оболочки и генетического материала одноцепочечной или двуцепочечной нуклеиновой кислоты (ДНК или, реже, РНК). Общая численность бактериофагов в природе примерно равна общей численности бактерий (1030{\displaystyle 10^{30}} — 1032{\displaystyle 10^{32}} частиц)[1]. Бактериофаги активно участвуют в круговороте химических веществ и энергии, оказывают заметное влияние на эволюцию микробов и бактерий[1].

Название Статус названия Родительский таксон Представители
Группа вирусов
Структура типичного миовируса бактериофага.
Бактериофаги
не определён
Домен Вирусы

Все вирусы, поражающие бактерий

История

Английский бактериолог Фредерик Туорт в статье 1915 года описал инфекционную болезнь стафилококков, возбудитель которой проходил через фильтры, и его можно было переносить от одной колонии к другой.

Независимо от Фредерика Туорта французско-канадский микробиолог Феликс Д'Эрелль 3 сентября 1917 года сообщил об открытии бактериофагов.[2] Наряду с этим известно, что российский микробиолог Николай Фёдорович Гамалея ещё в 1897 году впервые наблюдал явление лизиса бактерий (сибиреязвенной палочки) под влиянием перевиваемого агента[3][4].

После открытия явлений бактериофагии Д’Эрелль развил учение о том, что бактериофаги патогенных бактерий, являясь их паразитами, играют большую роль в патогенезе инфекций, обеспечивая выздоровление больного организма, а затем создания специфического иммунитета. Это положение привлекло к явлению бактериофагии внимание многих исследователей, которые предполагали найти в фагах важное средство борьбы с наиболее опасными инфекционными болезнями человека и животных.

Также Феликс Д’Эрелль выдвинул предположение, что бактериофаги имеют корпускулярную природу. Однако только после изобретения электронного микроскопа удалось увидеть и изучить ультраструктуру фагов. Долгое время представления о морфологии и основных особенностях фагов основывались на результатах изучения фагов группы Т — Т1, Т2,…, Т7, которые размножаются на Е. coli штамма B. Однако с каждым годом появлялись новые данные, касающиеся морфологии и структуры разнообразных фагов, что обусловило необходимость их морфологической классификации.

Роль бактериофагов в биосфере

  Бактериофаг ϕpp2 патогенных вибрионов V. parahaemolyticusи V. alginolyticus

Бактериофаги представляют собой наиболее многочисленную, широко распространённую в биосфере и, предположительно, наиболее эволюционно древнюю группу вирусов[5][6]. Приблизительный размер популяции фагов составляет более 1030 фаговых частиц[7].

В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат (почва, выделения человека и животных, вода и т. д.) микроорганизмами, тем в большем количестве в нём встречаются соответствующие фаги. Так, фаги, лизирующие клетки всех видов почвенных микроорганизмов, находятся в почвах. Особенно богаты фагами чернозёмы и почвы, в которые вносились органические удобрения.

Бактериофаги выполняют важную роль в контроле численности микробных популяций, в автолизе стареющих клеток, в переносе бактериальных генов, выступая в качестве векторных «систем»[8].

Действительно, бактериофаги представляют собой один из основных подвижных генетических элементов. Посредством трансдукции они привносят в бактериальный геном новые гены. Было подсчитано, что за 1 секунду могут быть инфицированы 1024 бактерий[9]. Это означает, что постоянный перенос генетического материала распределяется между бактериями, обитающими в сходных условиях.

Высокий уровень специализации, долгосрочное существование, способность быстро репродуцироваться в соответствующем хозяине способствует их сохранению в динамичном балансе среди широкого разнообразия видов бактерий в любой природной экосистеме. Когда подходящий хозяин отсутствует, многие фаги могут сохранять способность к инфицированию на протяжении десятилетий, если не будут уничтожены экстремальными веществами либо условиями внешней среды[10].

Строение бактериофагов

  1 — головка, 2 — хвост, 3 — нуклеиновая кислота, 4 — капсид, 5 — «воротничок», 6 — белковый чехол хвоста, 7 — фибрилла хвоста, 8 — шипы, 9 — базальная пластинка

Бактериофаги различаются по химической структуре, типу нуклеиновой кислоты, морфологии и характеру взаимодействия с бактериями. По размеру бактериальные вирусы в сотни и тысячи раз меньше микробных клеток.

Типичная фаговая частица (вирион) состоит из головки и хвоста. Длина хвоста обычно в 2—4 раза больше диаметра головки. В головке содержится генетический материал — одноцепочечная или двуцепочечная РНК или ДНК с ферментом транскриптазой в неактивном состоянии, окружённая белковой или липопротеиновой оболочкой — капсидом, сохраняющим геном вне клетки[11].

Нуклеиновая кислота и капсид вместе составляют нуклеокапсид. Бактериофаги могут иметь икосаэдральный капсид, собранный из множества копий одного или двух специфичных белков. Обычно углы состоят из пентамеров белка, а опора каждой стороны из гексамеров того же или сходного белка. Более того, фаги по форме могут быть сферические, лимоновидные или плеоморфные[12].

Хвост, или отросток, представляет собой белковую трубку — продолжение белковой оболочки головки, в основании хвоста имеется АТФаза, которая регенерирует энергию для инъекции генетического материала. Существуют также бактериофаги с коротким отростком, не имеющие отростка и нитевидные[13].

Головка округлой, гексагональной или палочковидной формы диаметром 45—140 нм. Отросток толщиной 10—40 и длиной 100—200 нм. Одни из бактериофагов округлы, другие нитевидны, размером 8x800 нм. Длина нити нуклеиновой кислоты во много раз превышает размер головки, в которой находится в скрученном состоянии, и достигает 60—70 мкм. Отросток имеет вид полой трубки, окружённой чехлом, содержащим сократительные белки, подобные мышечным. У ряда вирусов чехол способен сокращаться, обнажая часть стержня. На конце отростка у многих бактериофагов имеется базальная пластинка, от которой отходят тонкие длинные нити, способствующие прикреплению фага к бактерии. Общее количество белка в частице фага — 50—60 %, нуклеиновых кислот — 40—50 %.[14]

Фаги, как и все вирусы, являются абсолютными внутриклеточными паразитами. Хотя они содержат всю информацию для запуска собственной репродукции в соответствующем хозяине, у них отсутствуют механизмы для выработки энергии и рибосомы для синтеза белка. Размер известных фаговых геномов варьирует от нескольких тысяч до 498 тысяч пар оснований (геном фага G, поражающего бацилл)[15][16].

Систематика бактериофагов

Большое количество выделенных и изученных бактериофагов определяет необходимость их систематизации. Этим занимается Международный комитет по таксономии вирусов (ICTV). В настоящее время, согласно Международной классификации и номенклатуре вирусов, бактериофаги разделяют в зависимости от типа нуклеиновой кислоты и морфологии.

На данный момент выделяют девятнадцать семейств. Из них только два РНК-содержащих и только пять семейств имеют оболочку. Из семейств ДНК-содержащих вирусов только два семейства имеют одноцепочечные геномы. У девяти ДНК-содержащих семейств геном представлен кольцевой ДНК, а у других девяти — линейной. Девять семейств специфичны только для бактерий, остальные девять только для архей, а (Tectiviridae) инфицирует как бактерий, так и архей[17].

ICTV классификация вирусов бактерий и архей[18] Порядок Семейство Морфология Нуклеиновая кислота Пример
Caudovirales Myoviridae Без оболочки, сократительный хвост Линейная дцДНК Фаг Т4, фаг μ, PBSX, P1Puna-like, P2, I3, Bcep 1, Bcep 43, Bcep 78
Siphoviridae Без оболочки, несократительный хвост (длинный) Линейная дцДНК Фаг λ, фаг T5, phi, C2, L5, HK97, N15
Podoviridae Без оболочки, несократительный хвост (короткий) Линейная дцДНК Фаг T7, фаг T3, P22, P37
Ligamenvirales Lipothrixviridae В оболочке, палочкообразные Линейная дцДНК Вирус ''Acidianus filamentous'' 1
Rudiviridae Без оболочки, палочкообразные Линейная дцДНК Палочкообразный вирус ''Sulfolobus islandicus'' 1
Неизвестен Ampullaviridae В оболочке, бутылкообразные Линейная дцДНК
Bicaudaviridae Без оболочки, лемонообразные Кольцевая дцДНК
Clavaviridae Без оболочки, палочкообразные Кольцевая дцДНК
Corticoviridae Без оболочки, изометрические Кольцевая дцДНК
Cystoviridae В оболочке, сферические Сегментированная дцРНК
Fuselloviridae Без оболочки, лемонообразные Кольцевая дцДНК
Globuloviridae В оболочке, изометрические Линейная дцДНК
Guttaviridae Без оболочки, яйцевидные Кольцевая дцДНК
Inoviridae Без оболочки, нитевидные Кольцевая оцДНК
Leviviridae Без оболочки, изометрические Линейная оцРНК MS2, Qβ
Microviridae Без оболочки, изометрические Кольцевая оцДНК ΦX174
Plasmaviridae В оболочке, плеоморфные Кольцевая дцДНК
Tectiviridae Без оболочки, изометрические Линейная дцДНК

Взаимодействие бактериофага с бактериальными клетками

  Адсорбция бактериофагов на поверхности бактериальной клетки

По характеру взаимодействия бактериофага с бактериальной клеткой различают вирулентные и умеренные фаги[13]. Вирулентные фаги могут только увеличиваться в количестве посредством литического цикла[10]. Процесс взаимодействия вирулентного бактериофага с клеткой складывается из нескольких стадий: адсорбции бактериофага на клетке, проникновения в клетку, биосинтеза компонентов фага и их сборки, выхода бактериофагов из клетки[9][19].

Первоначально бактериофаги прикрепляются к фагоспецифическим рецепторам на поверхности бактериальной клетки. Хвост фага с помощью ферментов, находящихся на его конце (в основном лизоцима), локально растворяет оболочку клетки, сокращается и содержащаяся в головке ДНК инъецируется в клетку, при этом белковая оболочка бактериофага остаётся снаружи. Инъецированная ДНК вызывает полную перестройку метаболизма клетки: прекращается синтез бактериальной ДНК, РНК и белков. ДНК бактериофага начинает транскрибироваться с помощью собственного фермента транскриптазы, который после попадания в бактериальную клетку активируется. Синтезируются сначала ранние, а затем поздние иРНК, которые поступают на рибосомы клетки-хозяина, где синтезируются ранние (ДНК-полимеразы, нуклеазы) и поздние (белки капсида и хвостового отростка, ферменты лизоцим, АТФаза и транскриптаза) белки бактериофага. Репликация ДНК бактериофага происходит по полуконсервативному механизму и осуществляется с участием собственных ДНК-полимераз. После синтеза поздних белков и завершения репликации ДНК наступает заключительный процесс — созревание фаговых частиц или соединение фаговой ДНК с белком оболочки и образование зрелых инфекционных фаговых частиц[20].

Продолжительность этого процесса может составлять от нескольких минут до нескольких часов[10]. Затем происходит лизис клетки, и освобождаются новые зрелые бактериофаги[13]. Иногда фаг инициирует лизирующий цикл, что приводит к лизису клетки и освобождению новых фагов. В качестве альтернативы фаг может инициировать лизогенный цикл, при котором он вместо репликации обратимо взаимодействует с генетической системой клетки-хозяина, интегрируясь в хромосому или сохраняясь в виде плазмиды[10]. Таким образом, вирусный геном реплицируется синхронно с ДНК хозяина и делением клетки, а подобное состояние фага называется профагом. Бактерия, содержащая профаг, становится лизогенной до тех пор, пока при определённых условиях или спонтанно профаг не будет стимулирован на осуществление лизирующего цикла репликации. Переход от лизогении к лизису называется лизогенной индукцией или индукцией профага. На индукцию фага оказывает сильное воздействие состояние клетки хозяина предшествующее индукции, также как наличие питательных веществ и другие условия, имеющие место в момент индукции. Скудные условия для роста способствуют лизогенному пути, тогда как хорошие условия способствуют лизирующей реакции[10][13][20].

Очень важным свойством бактериофагов является их специфичность: бактериофаги лизируют культуры определённого вида, более того, существуют так называемые типовые бактериофаги, лизирующие варианты внутри вида, хотя встречаются поливалентные бактериофаги, которые паразитируют в бактериях разных видов[21][22].

Жизненный цикл

Умеренные и вирулентные бактериофаги на начальных этапах взаимодействия с бактериальной клеткой имеют одинаковый цикл.

  • Адсорбция бактериофага на фагоспецифических рецепторах клетки.
  • Инъекция фаговой нуклеиновой кислоты в клетку хозяина.
  • Совместная репликация фаговой и бактериальной нуклеиновой кислоты.
  • Деление клетки.
  • Далее бактериофаг может развиваться по двум моделям: лизогенный либо литический путь. Умеренные бактериофаги после деления клетки находятся в состоянии профага (лизогенный путь). Вирулентные бактериофаги развиваются по литической модели:
  • Нуклеиновая кислота фага направляет синтез ферментов фага, используя для этого белоксинтезирующий аппарат бактерии. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага «подчиняет» себе клеточный аппарат синтеза белка.
  • Нуклеиновая кислота фага реплицируется и направляет синтез новых белков оболочки. Образуются новые частицы фага в результате спонтанной самосборки белковой оболочки (капсид) вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.
  • Лизис клетки: клетка лопается под воздействием лизоцима; высвобождается около 200—1000 новых фагов; фаги инфицируют другие бактерии.

Применение

В медицине

Одной из областей использования бактериофагов является антибактериальная терапия, альтернативная приёму антибиотиков. Например, применяются бактериофаги: стрептококковый, стафилококковый, клебсиеллёзный, дизентерийный поливалентный, пиобактериофаг, коли, протейный и колипротейный и другие. В России зарегистрировано и применяется 13 медицинских препаратов на основе фагов[1]. В настоящее время их применяют для лечения бактериальных инфекций, которые не чувствительны к традиционному лечению антибиотиками, особенно в республике Грузия[23][24][25]. Обычно, применение бактериофагов сопровождается большим, чем антибиотики, успехом там, где присутствуют биологические мембраны, покрытые полисахаридами, через которые антибиотики обычно не проникают[26]. В настоящее время терапевтическое применение бактериофагов не получило одобрения на Западе, хотя и применяются фаги для уничтожения бактерий, вызывающих пищевые отравления, таких, как листерии[27]. В многолетнем опыте в объёме крупного города и сельской местности доказана необычайно высокая лечебная и профилактическая эффективность дизентерийного бактериофага (П. М. Лернер, 2010)[источник не указан 1845 дней]. В России терапевтические фаговые препараты делают давно, фагами лечили ещё до антибиотиков. В последние годы фаги широко использовали после наводнений в Крымске[28] и Хабаровске, чтобы предотвратить дизентерию.

В биологии

Бактериофаги применяются в генной инженерии в качестве векторов, переносящих участки ДНК, возможна также естественная передача генов между бактериями посредством некоторых фагов (трансдукция).

Фаговые векторы обычно создают на базе умеренного бактериофага λ, содержащего двухцепочечную линейную молекулу ДНК. Левое и правое плечи фага имеют все гены, необходимые для литического цикла (репликации, размножения). Средняя часть генома бактериофага λ (содержит гены, контролирующие лизогению, то есть его интеграцию в ДНК бактериальной клетки) не существенна для его размножения и составляет примерно 25 тысяч пар нуклеотидов. Данная часть может быть заменена на чужеродный фрагмент ДНК. Такие модифицированные фаги проходят литический цикл, но лизогения не происходит. Векторы на основе бактериофага λ используют для клонирования фрагментов ДНК эукариот (то есть более крупных генов) размером до 23 тысяч пар нуклеотидов (т. п. н.). Причём, фаги без вставок — менее 38 т. п. н. или, напротив, со слишком большими вставками — более 52 т. п. н. не развиваются и не поражают бактерии[29].

Бактериофаги M13, фаг Т4, T7 и фаг λ используют для изучения белок-белковых, белок-пептидных и ДНК-белковых взаимодействий методом фагового дисплея.

Поскольку размножение бактериофага возможно только в живых клетках, бактериофаги могут быть использованы для определения жизнеспособности бактерий. Данное направление имеет большие перспективы, поскольку, одним из основных вопросов при разных биотехнологических процессах является определение жизнеспособности используемых культур. С помощью метода электрооптического анализа клеточных суспензий была показана возможность изучения этапов взаимодействия фаг-микробная клетка[30].

См. также

Примечания

  1. ↑ 1 2 3 Сергей Головин Бактериофаги: убийцы в роли спасителей // Наука и жизнь. — 2017. — № 6. — С. 26-33
  2. ↑ Félix d'Hérelles (1917). «Sur un microbe invisible antagoniste des bacilles dysentériques» (PDF). Comptes rendus Acad Sci Paris. 165: 373–5. Проверено 5 September 2010.
  3. ↑ Вирусы бактерий
  4. ↑ Бактериофаг (недоступная ссылка)
  5. ↑ Ackermann H.-W. // Res. Microbiol., 2003. — V. 154. — P. 245—251
  6. ↑ Hendrix R.W. // Theor. Popul. Biol., 2002. — V. 61. — P. 471—480
  7. ↑ Suttle C.A. (September 2005), Vuiruses in the sea. Nature 437:356-361.
  8. ↑ Шестаков С. В. Как происходит и чем лимитируется горизонтальный перенос генов у бактерий. Экологическая генетика 2007. — Т. 5. — № 2. — C. 12-24.
  9. ↑ 1 2 Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L., Durkin A. S., Deboy R. T., Davidsen T. M., Mora M., Scarselli M., Margarit y Ros I., Peterson J. D., Hauser C. R., Sundaram J. P., Nelson W. C., Madupu R., Brinkac L. M., Dodson R. J., Rosovitz M. J., Sullivan S. A., Daugherty S. C., Haft D. H., Selengut J., Gwinn M. L., Zhou L., Zafar N., Khouri H., Radune D., Dimitrov G., Watkins K., O’Connor K. J., Smith S., Utterback T. R., White O., Rubens C. E., Grandi G., Madoff L. C., Kasper D. L., Telford J. L.,. Wessels M. R, Rappuoli R., Fraser C. M. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial «pan-genome.» Proc. Natl. Acad. Sci. USA 2005. 102: 13950-13955
  10. ↑ 1 2 3 4 5 Guttman B., Raya R., Kutter E. Basic Phage Biology, in Bacteriophages: Biology and Applications, (Kutter E. and Sulakvelidze A., ed.), CRP Press, 2005 FL. — P. 29-66.
  11. ↑ Ковалёва Е. Н. Создание биопрепарата на основе выделенных и изученных бактериофагов Enterococcus faecalis: Дис. … канд. биол. наук. — Саратов, 2009. — 151 с.
  12. ↑ Ackermann H.-W. // Res. Microbiol., 2003. — V. 154. — P. 245—251.
  13. ↑ 1 2 3 4 Ожерельева Н. Г. Краткая Медицинская Энциклопедия, М.: изд-во «Советская Энциклопедия», 1989. — издание второе.
  14. ↑ Бактериофаги // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  15. ↑ Molecular Medical Microbiology / Yi-Wei Tang, Max Sussman, Dongyou Liu, Ian Poxton, Joseph Schwartzman. — 2 ed. — Academic Press, 2014. — Vol. 1. — P. 579. — 2216 p. — ISBN 9780123977632.
  16. ↑ Bacillus phage G, complete genome. GenBank.
  17. ↑ Virus Taxonomy. Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses / Edited by M.H.V. van Regenmontel et al. — San Diego: Academic Press, 2000. — P. 43-53, 64-129.
  18. ↑ Mc Grath S and van Sinderen D (editors). Bacteriophage: Genetics and Molecular Biology. — 1st. — Caister Academic Press, 2007. — ISBN [1].
  19. ↑ Raya R.R., Hébert E.M. Isolation of phage via induction of lysogens. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interaction (Martha R.J. Clokie, Andrew M. Kropinski (eds.), 2009. — V. 501. — P. 23-32.
  20. ↑ 1 2 Микробиология: учеб. пособие / В. В. Лысак. — Минск: БГУ, 2007. — 430 с.
  21. ↑ Адамс М. Бактериофаги / М. Адамс. — М.: Медгиз, 1961. — 521 с.
  22. ↑ Гольдфарб Д. М., Бактериофагия / Д. М. Гольдфарб. — М.: Медгиз, 1961. — 299 с.
  23. ↑ BBC Horizon: Phage - The Virus that Cures 1997-10-09
  24. ↑ Parfitt T (2005). «Georgia: an unlikely stronghold for bacteriophage therapy». Lancet 365 (9478): 2166–7. DOI:10.1016/S0140-6736(05)66759-1. PMID 15986542.
  25. ↑ Thiel, Karl (January 2004). «Old dogma, new tricks—21st Century phage therapy». Nature Biotechnology (Nature Publishing Group) 22 (1): 31–36. DOI:10.1038/nbt0104-31. PMID 14704699. Проверено 2007-12-15.
  26. ↑ Aguita, Maria. Combatting Bacterial Infection, LabNews.co.uk. Архивировано 28 февраля 2009 года. Проверено 5 мая 2009.
  27. ↑ Pirisi A (2000). «Phage therapy—advantages over antibiotics?». Lancet 356 (9239): 1418. DOI:10.1016/S0140-6736(05)74059-9. PMID 11052592.
  28. ↑ Все юные жители Крымска привиты от гепатита A | РИА ФедералПресс
  29. ↑ Щелкунов С. Н. Генетическая инженерия / С. Н. Щелкунов. — Новосибирск: Сиб. унив. изд-во, 2004. — 496 с.
  30. ↑ Guliy O.I., Bunin V.D., O’Neil D., Ivnitski D., Ignatov O.V. A new electro-optical approach to rapid assay of cell viability // Biosensors and Bioelectronics. 2007. V. 23. P. 583—587.

Ссылки

ru-wiki.org

Бактериофаги. Виды и показания к применению биопрепаратов :: SYL.ru

Существуют не только плохие вирусы, несущие нам болезни, но и хорошие, от этих болезней нас избавляющие. Это бактериофаги. Виды их отличаются тем, что уничтожают только один определенный вид бактерий. Как они это делают? Да просто их едят, точнее, используют материал бактерий для продления своего рода. По-гречески «фагито» – это еда, а «фао» – кушать. Понять слово «бактериофаг» легко. Это тот, кто кушает бактерий.

Что представляют собой бактериофаги

Все без исключения вирусы являются паразитами, живущими за счет других. Бактериофаги - не исключение. Они существуют только там, где можно найти бактерии. А поскольку вредоносные микроорганизмы есть везде – в воздухе, в воде, в почве, в человеке, значит, везде есть и бактериофаги. Виды этих крохотных хищников (бактериофаг раз в 100 меньше средней бактерии) отличаются, но принцип их «охоты» практически одинаков. Внешне они напоминают фантастический космический модуль, имеющий «центральный отсек» - головку, в которой хранится ДНК или РНК бактериофага, «соединительный шлюз» - хвост в виде полой трубочки, по которой ДНК продвигается к бактерии, и «опорные стойки» - нити, которыми бактериофаг закрепляется на своей добыче. Форма головки у них бывает самая разная, а хвост у некоторых из них имеет чехол, в который прячется стержень, пока он не нужен.

Как бактериофаги расправляются с бактериями

Найдя нужную бактерию, маленький хищник прикрепляется к ее поверхности. Ферменты, находящиеся в хвосте бактериофага, растворяют оболочку бактерии, делая в ней отверстие, через которое "хозяин" и впрыскивает свою ДНК. Попав в бактерию, она полностью меняет ее метаболизм и начинает создавать свои белки, РНК, ДНК, то есть формировать «деток» пожирателя патогена. Когда этот процесс заканчивается, бактерия разрывается, а в среду выплескиваются молодые бактериофаги. Виды некоторых семейств этих существ «съедают» бактерию за пару минут, что трудно переоценить в медицинской практике. Медики в последнее время прибегают к помощи бактериофагов все чаще, ведь препараты этих вирусов не имеют побочных эффектов, сочетаются практически со всеми лекарствами, включая антибиотики, не подавляют иммунитет. Бактериофагами лечат даже грудничков, настолько они безвредны.

Слабые места подобной терапии

Бактериофаги, виды которых «работают» только со «своими» бактериями, так и называются: дизентерийные, стафилококковые, стрептококковые и так далее. Эта особенность считается недостатком полезных вирусов. Также есть версия, которая, правда, пока только проверяется, что бактериофаги истребляют бактерий до тех пор, пока их много. Как только количество упомянутых микроорганизмов снижается, и бактериофагам становится негде плодиться, они прекращают уничтожение патогенов, тем самым регулируя их число. Поэтому при терапии некоторыми препаратами данного типа приходится проходить повторные курсы. Однако они незаменимы в лечении гнойных ран, отитов, насморка, урологических болезней, гастроэнтероколитов и других. Так, высоким лечебным эффектом обладает биопрепарат «Бактериофаг клебсиелл поливалентный очищенный». Он убивает опасных бактерий клебсиелл, вызывающих пневмонию, сепсис грудничков и новорожденных, ЛОР-болезни, ЖКТ, омфалиты и другие заболевания. Препарат выпускается в ампулах и флаконах. Его используют наружно, местно, внутренне, делают с ним ингаляции и промывания.

Одно лекарство от шести болезней

Средство «Бактериофаг секстафаг» может справиться со стафилококками, протеями, стрептококками, пневмонией, вызванной клебсиеллами, кишечными и синегнойными палочками, потому что в нем содержатся сразу шесть видов полезных вирусов. Спектр действия препарата чрезвычайно широк. Он применяется при лечении разного вида инфекций, включая хирургические и урогенитальные, септических, гнойно-воспалительных заболеваний, ангин, тонзиллитов, пневмоний и очень многих других патологий. Противопоказаний у лекарства нет, побочные эффекты не наблюдались. Выпускается препарат в капсулах и флаконах.

www.syl.ru

Бактериофаг, мы тебя видим!

: 26 Окт 2016 , Бактериофаги: враги наших врагов , том 70, №4

Прошло сто лет с того времени, как английский микробиолог Ф. Туорт отметил прозрачные стекловидные пятна в колониях микрококков, где погибли бактериальные клетки. После открытия бактериофагов их исследования долгое время имели феноменологический характер из-за недостаточного развития экспериментальных методов. Ученые не имели возможности детально изучить особенности противобактериального воздействия бактериофагов, так как последние нельзя увидеть не только невооруженным глазом, но и с помощью светового микроскопа. Изучение вирусов, в том числе вирусов бактерий, вышло на принципиально новый уровень лишь с созданием и внедрением в научную практику электронного микроскопа

С появлением электронной микроскопии стало понятно, что бактериофаги являются даже не микро- а наноорганизмами, так как их размеры не превышают 100 нм. Также оказалось, что по своему строению они отличаются колоссальным разнообразием. Соответственно, возник вопрос об их номенклатуре. В основу первой классификации, которая была предложена еще в 1943 г., легли особенности строения фагов, установленные с помощью электронной микроскопии. Один из ее основоположников, Э. Руска, в своей общей схеме классификации вирусов выделил бактериофаги отдельно, разделив их на три типа по морфологическим характеристикам (Ackermann, 2009).

В соответствии с решением Международного комитета по таксономии вирусов (ICTV) бактериофагами называют вирусы, специфически инфицирующие клетки бактерий и архей. Определение видовой принадлежности бактериофагов проводят на основе комплекса признаков, в который обязательно входит форма и размеры вирусного капсида, тип нуклеиновой кислоты (ДНК или РНК), слагающей геном, наличие/отсутствие оболочки

В основу современной систематики бактериофагов, созданной в 1967 г., легла классификация, включавшая шесть морфотипов. Но по мере открытия новых бактериофагов в нее включались новые семейства, роды и виды. С развитием методов молекулярной биологии появились дополнительные критерии классификации, учитывающие тип нуклеиновой кислоты и (или) композицию белков в составе фага.

Применение в исследованиях бактериофагов современных молекулярных методов, позволило выявить множество особенностей этих интересных организмов. Сами бактериофаги в свою очередь оказались для молекулярных биологов очень полезным методологическим инструментом (Brussow, 2013).

Была бы голова, а хвост будет

Бактериофаги, по сути, устроены сравнительно просто: каждый такой вирус представляет собой комплекс нуклеиновой кислоты и белков, упакованных особым образом. Форма их может быть причудлива, однако около 96 % всех известных бактериофагов имеют «хвостатый» фенотип (Matsuzaki et al., 2005): у них имеется «голова» икосаэдрической формы (белковый резервуар, где упакована нуклеиновая кислота) и «хвост» – белковая структура, где расположены элементы, способные прочно связываться с рецепторами (особыми белками или полисахаридами) на поверхности бактерии. Разные виды «хвостатых» бактериофагов различаются размерами «головы», длинной и тонкой структурой «хвоста».

Чтобы узнать вид бактериофага, нужно определить его ультраструктурные характеристики, для чего используют метод негативного контрастирования. Образцом может служить любая суспензия, содержащая фаги: вода из природного источника, смывы с кишечника животных или суспензия бактериальных клеток после инкубации с бактериофагом в условиях лаборатории. На каплю подготовленной суспензии помещают специальную медную сетку, покрытую тонкой полимерной пленкой, на которую и сорбируются бактериофаги. Затем сетку обрабатывают контрастирующим веществом (обычно уранилацетатом или фосфорно-вольфрамовой кислотой), которое окружает частицы бактериофага и создает темный фон, на котором бактериофаги, имеющие низкую электронную плотность, становятся видны в электронном микроскопе.

На сегодняшний день с помощью электронной микроскопии описано свыше 6,3 тыс. бактериофагов (Ackerman, Tiekotter, 2012; Ackermann, Prangishvili, 2012). Оказалось, что далеко не у всех бактериофагов можно четко выделить «голову» и «хвост», а что касается их наследственного материала, то наиболее часто встречаются фаги с двуцепочечной ДНК. Систематика бактериофагов очень динамична, поскольку регулярно обнаруживаются новые фаги (Ackermann, 2007).

Охота на бактерию

Совершенствование методов электронной микроскопии позволило визуализировать не только сами бактериофаги, но и процесс их размножения. Наиболее детально исследован процесс проникновения в клетку «хвостатых» бактериофагов, описаны молекулярные механизмы «впрыскивания» фаговой ДНК в цитоплазму бактериальной клетки (Guerrero-Ferreira, Wright, 2013).

Царство прокариотов (доядерных организмов) подразделяется, как известно, на бактерий и архей. Представители этих подцарств отличаются друг от друга структурой клеточной стенки, особенностями жизнедеятельности и степенью устойчивости к факторам внешней среды (большая часть архей – это обитатели экстремальных местообитаний). Несмотря на небольшое число выделенных видов вирусов архей, их морфологическое разнообразие уже сейчас превосходит разнообразие фагов бактерий. Среди них встречаются и типичные для последних «хвостатые» формы, однако подавляющее большинство археофагов имеют уникальные морфотипы. Среди них – вирионы в виде «эллипсоида» веретенообразной, капельной и бутылочной формы, бесхвостые или с двумя хвостами, сферические и палочковидные вирионы и т. п. При этом обнаруженное морфологическое разнообразие вирусов архей представляет собой, вероятно, лишь верхушку айсберга. Уникальные характеристики археофагов наряду с существованием трех «клеточных линий» на планете – бактерий, архей и эукариотов (ядерных организмов), свидетельствуют о наличии трех специфических вирусных «доменов», образовавшихся в результате долгой совместной эволюции вирусов и их «хозяев», хотя некоторые из этих вирусов сохранили следы их общего происхождения (Pina et al., 2011)

Типичное поведение бактериофага при «нападении» на бактерию можно проследить на примере лизирующего фага. Сначала фаг прикрепляется к поверхности бактерии, используя ее рецепторы в качестве «якоря». Затем его «хвост» с помощью специальных белков внедряется в бактериальную стенку – образуется «канал», по которому нуклеиновая кислота фага вбрасывается в клетку. В течение следующего получаса в клетке бактерии происходит синтез белковых и нуклеиновых компонентов фагов и сборка новых фаговых частиц. После этого клетка разрушается, освобождая зрелые вирионы.

Сочетание методов негативного контрастирования и ультратонких срезов* позволяет проследить все этапы воспроизводства бактериофагов, включая сорбцию частиц фага на поверхности бактериальных клеток, их проникновение в клетки и копирование. К сожалению, эта область исследований разработана существенно хуже, чем визуализация и идентификация бактериофагов методом негативного контрастирования. Между тем ультраструктурные характеристики каждого из этапов жизненного цикла бактериофагов могут быть полезны для адекватной оценки эффективности разрабатываемых методов фаговой терапии.

Бактериофаги, несомненно, представляют собой уникальное явление на нашей планете: с одной стороны, они просто устроены, с другой – характеризуются колоссальным разнообразием как своей морфологии, так и своих потенциальных «жертв».

Для нас эти наноорганизмы не только безопасны, но и «дружествены», так как способны убивать патогенные бактериальные клетки, не затрагивая при этом клетки высших организмов, включая человека, а также сельскохозяйственных животных или растений. Это свойство позволяет использовать бактериофаги для терапии бактериальных инфекций, следуя принципу «враг моего врага – мой друг».

Перспективность фаговой терапии определяется не только самим фактом уничтожения бактерий фагами, но и высокой специфичностью взаимодействия фаг­-«хозяин». Наконец, поскольку речь идет о природном феномене, человек может воздействовать на патогенные бактерии, не применяя вредные химические агенты.

* При методе ультратонких срезов клетки заливают в особую смолу, и из получившихся твердых блоков готовят срезы толщиной 60—80 нм на ультрамикротоме с помощью стеклянного или алмазного ножа

Литература

Ackermann H. W., Prangishvili D. Prokaryote viruses studied by electron microscopy. 2012. N. 157. P. 1843—1849.

Ackermann H. W., Tiekotter K. L., Murphy’s law – if anything can go wrong, it will // Bacteriophage. 2012. N. 2:2. P. 122—129.

Bacteriophages methods and protocols / Ed. A. M. Kropinski, R. J. Clokie. Humana Press, 2009. V. 1.

Duckworth D. H. Who discovered bacteriophage? // Bacteriological reviews. 1976. V. 40. N. 4. P. 793—802.

Introduction: a short history of virology // Viruses and man: a history of interactions / Ed. M. W. Taylor. Springer, 2014. P. 1—21.

Krylov V. N. Phage therapy in therms of Bacteriophage genetics: hopes, prospects, safety, limitation // Rus. J. of genetics. 2001. V. 37. N. 7. P. 869—887.

Matsuzaki S., Rashel M., Uchiyama J., et al. Bacteriophage therapy: a revitalized therapy against bacterial infectious deseases // J. Infect. Chemother. 2005. N. 11. P. 211—219.

В публикации использованы фото авторов и рисунки Жени Власова

: 26 Окт 2016 , Бактериофаги: враги наших врагов , том 70, №4

scfh.ru


Twitter
Нравится

Поиск по сайту

Email рассылка

Узнавай первым

об обновлениях на сайте по Email БЕСПЛАТНО! Как только на сайте появятся новые посты, видео или фото, Ты сразу же будешь извещен об этом одним из первых.

Подробнее об этом

Новое на форуме

Нет сообщений для показа